Range-based localization in underwater wireless sensor networks using deep neural network

Author(s):  
Yuhan Dong ◽  
Zheng Li ◽  
Rui Wang ◽  
Kai Zhang
2021 ◽  
Author(s):  
Arunanshu Mahapatro ◽  
V CH Sekhar Rao Rayavarapu

<div>Wireless sensor networks (WSNs) is one of the vital part of the Internet of Things (IoT) that allow to acquire and provide information from interconnected sensors. Localization-based services are among the most appealing applications associated to the IoT. The deployment of WSNs in the indoor environments and urban areas creates obstacles that lead to the Non-Line-of-Sight (NLOS) propagation. Additionally, the localization accuracy is minimized by the NLOS propagation. The main intention of this paper is to develop an anchor-free node localization approach in multi-sink WSN under NLOS conditions using three key phases such as LOS/NLOS channel classification, range estimation, and anchor-free node localization. The first phase adopts Heuristicbased Deep Neural Network (H-DNN) for LOS/NLOS channel classification. Further, the same H-DNN s used for the range estimation. The hidden neurons of DNN are optimized using the proposed Adaptive Separating Operator-based Elephant Herding Optimization (ASO-EHO) algorithm. The node localization is formulated as a multi-objective optimization problem. The objectives such as localization error, hardware cost, and energy overhead are taken into consideration. ASO-EHO is used for node localization. The suitability of the proposed anchor-free node localization model is validated by comparing over the existing models with diverse counts of nodes. </div>


2022 ◽  
Vol 70 (3) ◽  
pp. 6127-6140
Author(s):  
Mohamed Ali ◽  
Ibrahim A. Abd El-Moghith ◽  
Mohamed N. El-Derini ◽  
Saad M. Darwish

2021 ◽  
Author(s):  
Arunanshu Mahapatro ◽  
V CH Sekhar Rao Rayavarapu

<div>Wireless sensor networks (WSNs) is one of the vital part of the Internet of Things (IoT) that allow to acquire and provide information from interconnected sensors. Localization-based services are among the most appealing applications associated to the IoT. The deployment of WSNs in the indoor environments and urban areas creates obstacles that lead to the Non-Line-of-Sight (NLOS) propagation. Additionally, the localization accuracy is minimized by the NLOS propagation. The main intention of this paper is to develop an anchor-free node localization approach in multi-sink WSN under NLOS conditions using three key phases such as LOS/NLOS channel classification, range estimation, and anchor-free node localization. The first phase adopts Heuristicbased Deep Neural Network (H-DNN) for LOS/NLOS channel classification. Further, the same H-DNN s used for the range estimation. The hidden neurons of DNN are optimized using the proposed Adaptive Separating Operator-based Elephant Herding Optimization (ASO-EHO) algorithm. The node localization is formulated as a multi-objective optimization problem. The objectives such as localization error, hardware cost, and energy overhead are taken into consideration. ASO-EHO is used for node localization. The suitability of the proposed anchor-free node localization model is validated by comparing over the existing models with diverse counts of nodes. </div>


2018 ◽  
Vol 6 (2) ◽  
pp. 238-241 ◽  
Author(s):  
Pushpender Sarao ◽  
◽  
Kannaiah Chattu ◽  
Ch. Swapna ◽  
◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1368 ◽  
Author(s):  
Luoheng Yan ◽  
Yuyao He ◽  
Zhongmin Huangfu

The underwater wireless sensor networks (UWSNs) have been applied in lots of fields such as environment monitoring, military surveillance, data collection, etc. Deployment of sensor nodes in 3D UWSNs is a crucial issue, however, it is a challenging problem due to the complex underwater environment. This paper proposes a growth ring style uneven node depth-adjustment self-deployment optimization algorithm (GRSUNDSOA) to improve the coverage and reliability of UWSNs, meanwhile, and to solve the problem of energy holes. In detail, a growth ring style-based scheme is proposed for constructing the connective tree structure of sensor nodes and a global optimal depth-adjustment algorithm with the goal of comprehensive optimization of both maximizing coverage utilization and energy balance is proposed. Initially, the nodes are scattered to the water surface to form a connected network on this 2D plane. Then, starting from sink node, a growth ring style increment strategy is presented to organize the common nodes as tree structures and each root of subtree is determined. Meanwhile, with the goal of global maximizing coverage utilization and energy balance, all nodes depths are computed iteratively. Finally, all the nodes dive to the computed position once and a 3D underwater connected network with non-uniform distribution and balanced energy is constructed. A series of simulation experiments are performed. The simulation results show that the coverage and reliability of UWSN are improved greatly under the condition of full connectivity and energy balance, and the issue of energy hole can be avoided effectively. Therefore, GRSUNDSOA can prolong the lifetime of UWSN significantly.


Sign in / Sign up

Export Citation Format

Share Document