Controlling Maximal Voluntary Contraction of the Upper Limb Muscles by Facial Electrical Stimulation

Author(s):  
Arinobu Niijima ◽  
Takashi Isezaki ◽  
Ryosuke Aoki ◽  
Tomoki Watanabe ◽  
Tomohiro Yamada
2019 ◽  
Vol 237 (12) ◽  
pp. 3195-3205 ◽  
Author(s):  
Tatsuya Kato ◽  
Atsushi Sasaki ◽  
Hikaru Yokoyama ◽  
Matija Milosevic ◽  
Kimitaka Nakazawa

Abstract It is well known that contracting the upper limbs can affect spinal reflexes of the lower limb muscle, via intraneuronal networks within the central nervous system. However, it remains unknown whether neuromuscular electrical stimulation (NMES), which can generate muscle contractions without central commands from the cortex, can also play a role in such inter-limb facilitation. Therefore, the objective of this study was to compare the effects of unilateral upper limb contractions using NMES and voluntary unilateral upper limb contractions on the inter-limb spinal reflex facilitation in the lower limb muscles. Spinal reflex excitability was assessed using transcutaneous spinal cord stimulation (tSCS) to elicit responses bilaterally in multiple lower limb muscles, including ankle and thigh muscles. Five interventions were applied on the right wrist flexors for 70 s: (1) sensory-level NMES; (2) motor-level NMES; (3) voluntary contraction; (4) voluntary contraction and sensory-level NMES; (5) voluntary contraction and motor-level NMES. Results showed that spinal reflex excitability of ankle muscles was facilitated bilaterally during voluntary contraction of the upper limb unilaterally and that voluntary contraction with motor-level NMES had similar effects as just contracting voluntarily. Meanwhile, motor-level NMES facilitated contralateral thigh muscles, and sensory-level NMES had no effect. Overall, our results suggest that inter-limb facilitation effect of spinal reflex excitability in lower limb muscles depends, to a larger extent, on the presence of the central commands from the cortex during voluntary contractions. However, peripheral input generated by muscle contractions using NMES might have effects on the spinal reflex excitability of inter-limb muscles via spinal intraneuronal networks.


Author(s):  
R. Chen

ABSTRACT:Cutaneous reflexes in the upper limb were elicited by stimulating digital nerves and recorded by averaging rectified EMG from proximal and distal upper limb muscles during voluntary contraction. Distal muscles often showed a triphasic response: an inhibition with onset about 50 ms (Il) followed by a facilitation with onset about 60 ms (E2) followed by another inhibition with onset about 80 ms (12). Proximal muscles generally showed biphasic responses beginning with facilitation or inhibition with onset at about 40 ms. Normal ranges for the amplitude of these components were established from recordings on 22 arms of 11 healthy subjects. An attempt was made to determine the alterent fibers responsible for the various components by varying the stimulus intensity, by causing ischemic block of larger fibers and by estimating the afferent conduction velocities. The central pathways mediating these reflexes were examined by estimating central delays and by studying patients with focal lesions


2013 ◽  
Vol 38 ◽  
pp. 83-94 ◽  
Author(s):  
Christian Froyd ◽  
Fernando Gabe Beltrami ◽  
Jørgen Jensen ◽  
Timothy David Noakes

Abstract The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscles (study 1). Additionally, potentiated quadriceps muscles torque was measured every min after a further 10 maximal voluntary contractions repeated every min (study 2). Electrical stimulation repeated several times without previous maximal voluntary contraction showed similar peak twitch torque. Peak twitch torque 4 s after a 5 s maximal voluntary contraction increased by 45±13% (study 1) and by 56±10% (study 2), the rate of torque development by 53±13% and 82±29%, and the rate of relaxation by 50±17% and 59±22%, respectively, but potentiation was lost already two min after a 5 s maximal voluntary contraction. There was a tendency for peak twitch torque to increase for the first five repeated maximal voluntary contractions, suggesting increased potentiation with additional maximal voluntary contractions. Correlations for peak twitch torque vs the rate of torque development and for the rate of relaxation were r2= 0.94 and r2=0.97. The correlation between peak twitch torque, the rate of torque development and the rate of relaxation suggests that potentiation is due to instantaneous changes in skeletal muscle contractility and relaxation.


2019 ◽  
Vol 10 ◽  
Author(s):  
Hui Wang ◽  
Pingao Huang ◽  
Xiangxin Li ◽  
Oluwarotimi Williams Samuel ◽  
Yun Xiang ◽  
...  

2006 ◽  
Vol 101 (1) ◽  
pp. 228-240 ◽  
Author(s):  
Evan R. L. Baldwin ◽  
Piotr M. Klakowicz ◽  
David F. Collins

Electrical stimulation (1-ms pulses, 100 Hz) produces more torque than expected from motor axon activation (extra contractions). This experiment investigates the most effective method of delivering this stimulation for neuromuscular electrical stimulation. Surface stimulation (1-ms pulses; 20 Hz for 2 s, 100 Hz for 2 s, 20 Hz for 3 s) was delivered to triceps surae and wrist flexors (muscle stimulation) and to median and tibial nerves (nerve stimulation) at two intensities. Contractions were evaluated for amplitude, consistency, and stability. Surface electromyograph was collected to assess how H-reflexes and M-waves contribute. In the triceps surae, muscle stimulation produced the largest absolute contractions (23% maximal voluntary contraction), evoked the largest extra contractions as torque increased by 412% after the 100-Hz stimulation, and was more consistent and stable compared with tibial nerve stimulation. Absolute and extra contraction amplitude, consistency, and stability of evoked wrist flexor torques were similar between stimulation types: torques reached 11% maximal voluntary contraction, and extra contractions increased torque by 161%. Extra contractions were 10 times larger in plantar flexors compared with wrist flexors with muscle stimulation but were similar with nerve stimulation. For triceps surae, H reflexes were 3.4 times larger than M waves during nerve stimulation, yet M waves were 15 times larger than H reflexes during muscle stimulation. M waves in the wrist flexors were larger than H reflexes during nerve (8.5 times) and muscle (18.5 times) stimulation. This is an initial step toward utilizing extra contractions for neuromuscular electrical stimulation and the first to demonstrate their presence in the wrist flexors.


2018 ◽  
Vol 1 (80) ◽  
Author(s):  
Rima Solianik ◽  
Vaida Aleknavičiūtė ◽  
Zita Andrijauskaitė ◽  
Algimantas Putramentas ◽  
Gintarė Dargevičiūtė ◽  
...  

Research background and hypothesis. There is much research information about the relationship between the knee joint angle and the quadriceps muscle torque (Mohamed et al., 2002), but still we lack evidence about the relationship between ankle angle and calf muscle torque. Research aim. The purpose of this research was to establish the dependence of maximal voluntary contraction (MVC) and electrical stimulation (ES)-evoked torque and calf muscle electrical activity (EMG) on different ankle plantar and dorsal fl exion angles. We hypothesized that the calf muscle MVC and ES-evoked torque as well as muscle EMG amplitude would increase with increasing muscle length (i. . increasing ankle angle).Research methods. The subjects in the research were ten non-trained men. Calf plantar and dorsal fl exors muscle ES and MVC torque were tested at eight different ankle angles (–25 o ; –15 o ; –5 o ; 0 o ; 15 o ; 25 o ; 35 o ; 45 o ) which were chosen in randomized sequence. The tibialis anterior, soleus, gastrocnemius lateralis and medialis muscle EMG were measured during muscle MVC.Research results. The results showed that the highest ES-evoked and MVC developed torque of plantar fl exion muscles was at –25° ankle angle (149.1 ± 31.6 N·m and 207.8 ± 38.1 N·m, respectively), while the highest dorsal fl exion MVC muscle torque was at 25° ankle angle (47.2 ± 8.1 N·m). However, dorsal fl exion muscle MVC torque increased with the muscle length only until 25° ankle angle. Discussion and conclusions. Plantar flexion muscle electrical stimulation evoked and plantar / dorsal fl exion muscle maximal voluntary contraction torques are highest at that ankle angle where muscle length is the longest.Keywords: maximal voluntary contraction, electrical stimulation, EMG.


2008 ◽  
Vol 105 (5) ◽  
pp. 1527-1532 ◽  
Author(s):  
T. Oya ◽  
B. W. Hoffman ◽  
A. G. Cresswell

This study investigated corticospinal-evoked responses in lower limb muscles during voluntary contractions at varying strengths. Similar investigations have been made on upper limb muscles, where evoked responses have been shown to increase up to ∼50% of maximal force and then decline. We elicited motor-evoked potentials (MEPs) and cervicomedullary motor-evoked potentials (CMEPs) in the soleus (Sol) and medial gastrocnemius (MG) muscles using magnetic stimulation over the motor cortex and cervicomedullary junction during voluntary plantar flexions with the torque ranging from 0 to 100% of a maximal voluntary contraction. Differences between the MEP and CMEP were also investigated to assess whether any changes were occurring at the cortical or spinal levels. In both Sol and MG, MEP and CMEP amplitudes [normalized to maximal M wave (Mmax)] showed an increase, followed by a plateau, over the greater part of the contraction range with responses increasing from ∼0.2 to ∼6% of Mmax for Sol and from ∼0.3 to ∼10% of Mmax for MG. Because both MEPs and CMEPs changed in a similar manner, the observed increase and lack of decrease at high force levels are likely related to underlying changes occurring at the spinal level. The evoked responses in the Sol and MG increase over a greater range of contraction strengths than for upper limb muscles, probably due to differences in the pattern of motor unit recruitment and rate coding for these muscles and the strength of the corticospinal input.


Sign in / Sign up

Export Citation Format

Share Document