scholarly journals Electrical stimulation alters muscle morphological properties in denervated upper limb muscles

EBioMedicine ◽  
2021 ◽  
Vol 74 ◽  
pp. 103737
Author(s):  
Ines Bersch ◽  
Jan Fridén
2019 ◽  
Vol 237 (12) ◽  
pp. 3195-3205 ◽  
Author(s):  
Tatsuya Kato ◽  
Atsushi Sasaki ◽  
Hikaru Yokoyama ◽  
Matija Milosevic ◽  
Kimitaka Nakazawa

Abstract It is well known that contracting the upper limbs can affect spinal reflexes of the lower limb muscle, via intraneuronal networks within the central nervous system. However, it remains unknown whether neuromuscular electrical stimulation (NMES), which can generate muscle contractions without central commands from the cortex, can also play a role in such inter-limb facilitation. Therefore, the objective of this study was to compare the effects of unilateral upper limb contractions using NMES and voluntary unilateral upper limb contractions on the inter-limb spinal reflex facilitation in the lower limb muscles. Spinal reflex excitability was assessed using transcutaneous spinal cord stimulation (tSCS) to elicit responses bilaterally in multiple lower limb muscles, including ankle and thigh muscles. Five interventions were applied on the right wrist flexors for 70 s: (1) sensory-level NMES; (2) motor-level NMES; (3) voluntary contraction; (4) voluntary contraction and sensory-level NMES; (5) voluntary contraction and motor-level NMES. Results showed that spinal reflex excitability of ankle muscles was facilitated bilaterally during voluntary contraction of the upper limb unilaterally and that voluntary contraction with motor-level NMES had similar effects as just contracting voluntarily. Meanwhile, motor-level NMES facilitated contralateral thigh muscles, and sensory-level NMES had no effect. Overall, our results suggest that inter-limb facilitation effect of spinal reflex excitability in lower limb muscles depends, to a larger extent, on the presence of the central commands from the cortex during voluntary contractions. However, peripheral input generated by muscle contractions using NMES might have effects on the spinal reflex excitability of inter-limb muscles via spinal intraneuronal networks.


Author(s):  
R. Chen

ABSTRACT:Cutaneous reflexes in the upper limb were elicited by stimulating digital nerves and recorded by averaging rectified EMG from proximal and distal upper limb muscles during voluntary contraction. Distal muscles often showed a triphasic response: an inhibition with onset about 50 ms (Il) followed by a facilitation with onset about 60 ms (E2) followed by another inhibition with onset about 80 ms (12). Proximal muscles generally showed biphasic responses beginning with facilitation or inhibition with onset at about 40 ms. Normal ranges for the amplitude of these components were established from recordings on 22 arms of 11 healthy subjects. An attempt was made to determine the alterent fibers responsible for the various components by varying the stimulus intensity, by causing ischemic block of larger fibers and by estimating the afferent conduction velocities. The central pathways mediating these reflexes were examined by estimating central delays and by studying patients with focal lesions


2021 ◽  
pp. 153944922110326
Author(s):  
Mary E. Stoykov ◽  
Courtney Heidle ◽  
Shamshir Kang ◽  
Lisa Lodesky ◽  
Lindsay E. Maccary ◽  
...  

Sensory priming is a technique to facilitate neuroplasticity and improve motor skills after injury. Common sensory priming modalities include peripheral nerve stimulation/somatosensory electrical stimulation (PNS/SES), transient functional deafferentation (TFD), and vibration. The aim of this study was to determine whether sensory priming with a motor intervention results in improved upper limb motor impairment or function after stroke. PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web of Science, and EMBASE were the databases used to search the literature in July 2020. This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and recommendations for the Cochrane collaboration. In total, 30 studies were included in the analysis: three studies examined TFD, 16 examined PNS/SES, 10 studied vibration, and one combined the three stimulation techniques. Most studies reported significant improvements for participants receiving sensory priming. Given the low risk, it may be advantageous to use sensory-based priming prior to or concurrent with upper limb training after stroke.


2016 ◽  
Vol 26 (2) ◽  
Author(s):  
Deepesh Kumar ◽  
Sunny Verma ◽  
Sutapa Bhattacharya ◽  
Uttama Lahiri

Neurological disorders often manifest themselves in the form of movement deficit on the part of the patient. Conventional rehabilitation often used to address these deficits, though powerful are often monotonous in nature. Adequate audio-visual stimulation can prove to be motivational. In the research presented here we indicate the applicability of audio-visual stimulation to rehabilitation exercises to address at least some of the movement deficits for upper and lower limbs. Added to the audio-visual stimulation, we also use Functional Electrical Stimulation (FES). In our presented research we also show the applicability of FES in conjunction with audio-visual stimulation delivered through VR-based platform for grasping skills of patients with movement disorder.


2018 ◽  
Vol 18 (16) ◽  
pp. 6812-6821 ◽  
Author(s):  
Yu Zhou ◽  
Yinfeng Fang ◽  
Kai Gui ◽  
Kairu Li ◽  
Dingguo Zhang ◽  
...  

QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Rasha M Ibrahim ◽  
Haitham M Hamdy ◽  
Amr A Mohammed ◽  
Ahmed M Elsadek ◽  
Ahmed M Bassiouny ◽  
...  

Abstract Background Limb-girdle muscular dystrophies (LGMDs) are a clinically and genetically heterogeneous group of disorders characterized by progressive muscle weakness and degenerative muscle changes. Studies have shown that ultrasound can be useful both for diagnosis and follow-up of LGMDs patients. Objectives This study aims to measure the sensitivity and the specificity of muscle ultrasound in assessment of suspected limb girdle muscular dystrophy patients. Subjects and Methods This cross-sectional descriptive study was conducted on Fifty-five patients with suspected LGMD from neuromuscular unit, myology clinic, Ain Shams University hospitals and eight healthy subjects. Age was above 2 years. Both sexes were included in the study. They underwent real-time B-mode ultrasonography performed with using Logiq p9 General Electric ultrasound machine and General Electric 7-11.5 MHZ linear array ultrasound probe. All ultrasound images have been obtained and scored by a single examiner and muscle echo intensity was visually graded semiquantitative according to Heckmatt's scale. The examiner was blinded to the muscle biopsy results and clinical evaluations. Results Statistical analysis revealed that the diagnostic performance of muscle US (Heckmatt’s score) in LGMD is most sensitive when calculated in all examined upper limb and lower limb muscles, followed by lower limb muscles alone. US of upper limb was found to be the least sensitive. Conclusions Muscle ultrasound is a practical and reproducible and valid tool that can be used in assessment of suspected LGMD patients.


Sign in / Sign up

Export Citation Format

Share Document