Signal reconstruction approach for map inference from crowd-sourced GPS traces

Author(s):  
Eric He ◽  
Fan Bai ◽  
Vijayakumar Bhagavatula ◽  
Curtis Hay
2015 ◽  
Vol 53 ◽  
pp. 131-140 ◽  
Author(s):  
Wiam Elleuch ◽  
Ali Wali ◽  
Adel M. Alimi
Keyword(s):  
Road Map ◽  

2021 ◽  
Vol 7 (2) ◽  
pp. 1-23
Author(s):  
Eric He ◽  
Fan Bai ◽  
Curtis Hay ◽  
Jinzhu Chen ◽  
Vijayakumar Bhagavatula

The amount of GPS data that can be collected is increasing tremendously, thanks to the increased popularity of Global Position System (GPS) devices (e.g., smartphones). This article aims to develop novel methods of converting crowd-sourced GPS traces into road topology maps. We explore map inference using a three-stage approach, which incorporates a novel Multi-source Variable Rate (MSVR) signal reconstruction mechanism. Unlike conventional map inference methods based on map graph theory, our approach, to the best of our knowledge, is the first use of estimation theory for map inference. In particular, our approach addresses the unique challenges of vehicular GPS data. This data is plentiful but suffers from noise in location and variable coverage of regions. This makes it difficult to differentiate between noise and sparsely covered regions when increasing coverage and reducing noise. Due to the asynchronous, variable sampling rate, and often under-sampled nature of the data, our MSVR approach can better handle inherent GPS errors, reconstruct road shapes more accurately, and better deal with variable GPS data density in empirical environments. We evaluated our method for map inference by comparing to Open Street Map maps as ground truth. We use the F-Measure, Precision, and Recall metrics to evaluate our method on Tsinghua University’s Beijing Taxi Dataset and Shanghai Jiao Tong University’s SUVnet Dataset. On these datasets, we obtained a mean<?brk?> F-Measure, Precision, and Recall of 0.7212, 0.9165, and 0.6021, respectively, outperforming a well-known method based on Kernel Density Estimation in terms of these evaluation metrics.


Author(s):  
Jingwen Wang ◽  
Xu Wang ◽  
Dan Yang ◽  
Kaiyang Wang

Background: Image reconstruction of magnetic induction tomography (MIT) is a typical ill-posed inverse problem, which means that the measurements are always far from enough. Thus, MIT image reconstruction results using conventional algorithms such as linear back projection and Landweber often suffer from limitations such as low resolution and blurred edges. Methods: In this paper, based on the recent finite rate of innovation (FRI) framework, a novel image reconstruction method with MIT system is presented. Results: This is achieved through modeling and sampling the MIT signals in FRI framework, resulting in a few new measurements, namely, fourier coefficients. Because each new measurement contains all the pixel position and conductivity information of the dense phase medium, the illposed inverse problem can be improved, by rebuilding the MIT measurement equation with the measurement voltage and the new measurements. Finally, a sparsity-based signal reconstruction algorithm is presented to reconstruct the original MIT image signal, by solving this new measurement equation. Conclusion: Experiments show that the proposed method has better indicators such as image error and correlation coefficient. Therefore, it is a kind of MIT image reconstruction method with high accuracy.


Author(s):  
Mei Sun ◽  
Jinxu Tao ◽  
Zhongfu Ye ◽  
Bensheng Qiu ◽  
Jinzhang Xu ◽  
...  

Background: In order to overcome the limitation of long scanning time, compressive sensing (CS) technology exploits the sparsity of image in some transform domain to reduce the amount of acquired data. Therefore, CS has been widely used in magnetic resonance imaging (MRI) reconstruction. </P><P> Discussion: Blind compressed sensing enables to recover the image successfully from highly under- sampled measurements, because of the data-driven adaption of the unknown transform basis priori. Moreover, analysis-based blind compressed sensing often leads to more efficient signal reconstruction with less time than synthesis-based blind compressed sensing. Recently, some experiments have shown that nonlocal low-rank property has the ability to preserve the details of the image for MRI reconstruction. Methods: Here, we focus on analysis-based blind compressed sensing, and combine it with additional nonlocal low-rank constraint to achieve better MR images from fewer measurements. Instead of nuclear norm, we exploit non-convex Schatten p-functionals for the rank approximation. </P><P> Results & Conclusion: Simulation results indicate that the proposed approach performs better than the previous state-of-the-art algorithms.


2020 ◽  
Vol 56 (22) ◽  
pp. 1213-1215
Author(s):  
Zhen Chen ◽  
Chongyi Fan ◽  
Xiaotao Huang

Sign in / Sign up

Export Citation Format

Share Document