A Novel Signal Reconstruction Algorithm for Perception Based Data Reduction in Haptic Signal Communication

Author(s):  
Julius Kammerl ◽  
Peter Hinterseer ◽  
Eckehard Steinbach
Author(s):  
Jingwen Wang ◽  
Xu Wang ◽  
Dan Yang ◽  
Kaiyang Wang

Background: Image reconstruction of magnetic induction tomography (MIT) is a typical ill-posed inverse problem, which means that the measurements are always far from enough. Thus, MIT image reconstruction results using conventional algorithms such as linear back projection and Landweber often suffer from limitations such as low resolution and blurred edges. Methods: In this paper, based on the recent finite rate of innovation (FRI) framework, a novel image reconstruction method with MIT system is presented. Results: This is achieved through modeling and sampling the MIT signals in FRI framework, resulting in a few new measurements, namely, fourier coefficients. Because each new measurement contains all the pixel position and conductivity information of the dense phase medium, the illposed inverse problem can be improved, by rebuilding the MIT measurement equation with the measurement voltage and the new measurements. Finally, a sparsity-based signal reconstruction algorithm is presented to reconstruct the original MIT image signal, by solving this new measurement equation. Conclusion: Experiments show that the proposed method has better indicators such as image error and correlation coefficient. Therefore, it is a kind of MIT image reconstruction method with high accuracy.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Jiajia Zhang ◽  
Guangcai Sun ◽  
Mengdao Xing ◽  
Zheng Bao ◽  
Fang Zhou

Multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) using stepped frequency (SF) waveforms enables a high two-dimensional (2D) resolution with wider imaging swath at relatively low cost. However, only the stripmap mode has been discussed for SF MIMO-SAR. This paper presents an efficient algorithm to reconstruct the signal of SF MIMO-SAR in the spotlight and sliding spotlight modes, which includes Doppler ambiguity resolving algorithm based on subaperture division and an improved frequency-domain bandwidth synthesis (FBS) method. Both simulated and constructed data are used to validate the effectiveness of the proposed algorithm.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. G83-G92
Author(s):  
Ya Xu ◽  
Fangzhou Nan ◽  
Weiping Cao ◽  
Song Huang ◽  
Tianyao Hao

Irregular sampled gravity data are often interpolated into regular grid data for convenience of data processing and interpretation. The compressed sensing theory provides a signal reconstruction method that can recover a sparse signal from far fewer samples. We have introduced a gravity data reconstruction method based on the nonequispaced Fourier transform (NFT) in the framework of compressed sensing theory. We have developed a sparsity analysis and a reconstruction algorithm with an iterative cooling thresholding method and applied to the gravity data of the Bishop model. For 2D data reconstruction, we use two methods to build the weighting factors: the Gaussian function and the Voronoi method. Both have good reconstruction results from the 2D data tests. The 2D reconstruction tests from different sampling rates and comparison with the minimum curvature and the kriging methods indicate that the reconstruction method based on the NFT has a good reconstruction result even with few sampling data.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Zhou-zhou Liu ◽  
Shi-ning Li

To reconstruct compressed sensing (CS) signal fast and accurately, this paper proposes an improved discrete differential evolution (IDDE) algorithm based on fuzzy clustering for CS reconstruction. Aiming to overcome the shortcomings of traditional CS reconstruction algorithm, such as heavy dependence on sparsity and low precision of reconstruction, a discrete differential evolution (DDE) algorithm based on improved kernel fuzzy clustering is designed. In this algorithm, fuzzy clustering algorithm is used to analyze the evolutionary population, which improves the pertinence and scientificity of population learning evolution while realizing effective clustering. The differential evolutionary particle coding method and evolutionary mechanism are redefined. And the improved fuzzy clustering discrete differential evolution algorithm is applied to CS reconstruction algorithm, in which signal with unknown sparsity is considered as particle coding. Then the wireless sensor networks (WSNs) sparse signal is accurately reconstructed through the iterative evolution of population. Finally, simulations are carried out in the WSNs data acquisition environment. Results show that compared with traditional reconstruction algorithms such as StOMP, the reconstruction accuracy of the algorithm proposed in this paper is improved by 36.4-51.9%, and the reconstruction time is reduced by 15.1-31.3%.


Author(s):  
Ashok Naganath Shinde ◽  
Sanjay L. Lalbalwar ◽  
Anil B. Nandgaonkar

In signal processing, several applications necessitate the efficient reprocessing and representation of data. Compression is the standard approach that is used for effectively representing the signal. In modern era, many new techniques are developed for compression at the sensing level. Compressed sensing (CS) is a rising domain that is on the basis of disclosure, which is a little gathering of a sparse signal’s linear projections including adequate information for reconstruction. The sampling of the signal is permitted by the CS at a rate underneath the Nyquist sampling rate while relying on the sparsity of the signals. Additionally, the reconstruction of the original signal from some compressive measurements can be authentically exploited using the varied reconstruction algorithms of CS. This paper intends to exploit a new compressive sensing algorithm for reconstructing the signal in bio-medical data. For this purpose, the signal can be compressed by undergoing three stages: designing of stable measurement matrix, signal compression and signal reconstruction. In this, the compression stage includes a new working model that precedes three operations. They are signal transformation, evaluation of [Formula: see text] and normalization. In order to evaluate the theta ([Formula: see text]) value, this paper uses the Haar wavelet matrix function. Further, this paper ensures the betterment of the proposed work by influencing the optimization concept with the evaluation procedure. The vector coefficient of Haar wavelet function is optimally selected using a new optimization algorithm called Average Fitness-based Glowworm Swarm Optimization (AF-GSO) algorithm. Finally, the performance of the proposed model is compared over the traditional methods like Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), Firefly (FF), Crow Search (CS) and Glowworm Swarm Optimization (GSO) algorithms.


Sign in / Sign up

Export Citation Format

Share Document