Cervical Cancer Risk Prediction Model and Analysis of Risk Factors based on Machine Learning

Author(s):  
Wenying Yang ◽  
Xin Gou ◽  
Tongqing Xu ◽  
Xiping Yi ◽  
Maohong Jiang
10.2196/23128 ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. e23128
Author(s):  
Pan Pan ◽  
Yichao Li ◽  
Yongjiu Xiao ◽  
Bingchao Han ◽  
Longxiang Su ◽  
...  

Background Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients’ prognosis early and administer precise treatment are of great significance. Objective The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction of mortality among ICU patients with COVID-19. Methods In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database. Results Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk calculator that is freely available for public usage. Conclusions The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates stability and can be used effectively to predict COVID-19 prognosis in ICU patients.


2019 ◽  
Vol 21 (6) ◽  
pp. 1462-1462 ◽  
Author(s):  
Andrew Lee ◽  
Nasim Mavaddat ◽  
Amber N. Wilcox ◽  
Alex P. Cunningham ◽  
Tim Carver ◽  
...  

2019 ◽  
Vol 21 (8) ◽  
pp. 1708-1718 ◽  
Author(s):  
Andrew Lee ◽  
Nasim Mavaddat ◽  
Amber N. Wilcox ◽  
Alex P. Cunningham ◽  
Tim Carver ◽  
...  

2020 ◽  
Author(s):  
Pan Pan ◽  
Yichao Li ◽  
Yongjiu Xiao ◽  
Bingchao Han ◽  
Longxiang Su ◽  
...  

BACKGROUND Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients’ prognosis early and administer precise treatment are of great significance. OBJECTIVE The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction of mortality among ICU patients with COVID-19. METHODS In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database. RESULTS Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk calculator that is freely available for public usage. CONCLUSIONS The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates stability and can be used effectively to predict COVID-19 prognosis in ICU patients.


2021 ◽  
Author(s):  
Ying Gao ◽  
Shu Li ◽  
Yujing Jin ◽  
Lengxiao Zhou ◽  
Shaomei Sun ◽  
...  

BACKGROUND Background: Machine learning algorithms well-suited in cancer research, especially in breast cancer for the investigation and development of riTo assess the performance of available machine learning-based breast cancer risk prediction model. OBJECTIVE Objective: To assess the performance of available machine learning-based breast cancer risk prediction model. METHODS Methods: As of June 9, 2021, articles on breast cancer risk prediction models by machine learning were searched in PubMed, Embase, and Web of Science. Studies describing the development or validation of risk prediction models for predicting future breast cancer risk were included. Pooled area under the curve (AUC) were calculated using the DerSimonian and Laird random-effects model. RESULTS Result: A total of 8 studies with 10 datasets were included. Neural network was the most common machine learning method for the development of risk prediction models. The pooled AUC of machine learning-based optimal risk prediction model reported in each study was 0.73 (95%CI: 0.66-0.80), which was higher than that of traditional risk factor-based risk prediction models (all Pheterogeneity < 0.001). The pooled AUC of neural network-based risk prediction model was higher than that of non-neural network-based optimal risk prediction model (0.71 vs. 0.68). Subgroup analysis showed that incorporation of imaging features risk models had a higher pooled AUC than model of non-incorporation of imaging features (0.73 vs. 0.61; Pheterogeneity =0.001). CONCLUSIONS Conclusions: The pooled machine learning-based breast cancer risk prediction model yield a good prediction performance and promising results.


CHEST Journal ◽  
2019 ◽  
Vol 156 (1) ◽  
pp. 112-119 ◽  
Author(s):  
Heber MacMahon ◽  
Feng Li ◽  
Yulei Jiang ◽  
Samuel G. Armato

2014 ◽  
Vol 23 (11) ◽  
pp. 2462-2470 ◽  
Author(s):  
Randa A. El-Zein ◽  
Mirtha S. Lopez ◽  
Anthony M. D'Amelio ◽  
Mei Liu ◽  
Reginald F. Munden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document