A Metaheuristic Algorithm for the Probabilistic Orienteering Problem

Author(s):  
Xiaochen Chou ◽  
Luca Maria Gambardella ◽  
Roberto Montemanni
2014 ◽  
Vol 13 (1) ◽  
pp. 4127-4145
Author(s):  
Madhushi Verma ◽  
Mukul Gupta ◽  
Bijeeta Pal ◽  
Prof. K. K. Shukla

Orienteering problem (OP) is an NP-Hard graph problem. The nodes of the graph are associated with scores or rewards and the edges with time delays. The goal is to obtain a Hamiltonian path connecting the two necessary check points, i.e. the source and the target along with a set of control points such that the total collected score is maximized within a specified time limit. OP finds application in several fields like logistics, transportation networks, tourism industry, etc. Most of the existing algorithms for OP can only be applied on complete graphs that satisfy the triangle inequality. Real-life scenario does not guarantee that there exists a direct link between all control point pairs or the triangle inequality is satisfied. To provide a more practical solution, we propose a stochastic greedy algorithm (RWS_OP) that uses the roulette wheel selectionmethod, does not require that the triangle inequality condition is satisfied and is capable of handling both complete as well as incomplete graphs. Based on several experiments on standard benchmark data we show that RWS_OP is faster, more efficient in terms of time budget utilization and achieves a better performance in terms of the total collected score ascompared to a recently reported algorithm for incomplete graphs.


Author(s):  
Seyed Kourosh Mahjour ◽  
Antonio Alberto Souza Santos ◽  
Manuel Gomes Correia ◽  
Denis José Schiozer

AbstractThe simulation process under uncertainty needs numerous reservoir models that can be very time-consuming. Hence, selecting representative models (RMs) that show the uncertainty space of the full ensemble is required. In this work, we compare two scenario reduction techniques: (1) Distance-based Clustering with Simple Matching Coefficient (DCSMC) applied before the simulation process using reservoir static data, and (2) metaheuristic algorithm (RMFinder technique) applied after the simulation process using reservoir dynamic data. We use these two methods as samples to investigate the effect of static and dynamic data usage on the accuracy and rate of the scenario reduction process focusing field development purposes. In this work, a synthetic benchmark case named UNISIM-II-D considering the flow unit modelling is used. The results showed both scenario reduction methods are reliable in selecting the RMs from a specific production strategy. However, the obtained RMs from a defined strategy using the DCSMC method can be applied to other strategies preserving the representativeness of the models, while the role of the strategy types to select the RMs using the metaheuristic method is substantial so that each strategy has its own set of RMs. Due to the field development workflow in which the metaheuristic algorithm is used, the number of required flow simulation models and the computational time are greater than the workflow in which the DCSMC method is applied. Hence, it can be concluded that static reservoir data usage on the scenario reduction process can be more reliable during the field development phase.


Author(s):  
Marc Demange ◽  
David Ellison ◽  
Bertrand Jouve

Sign in / Sign up

Export Citation Format

Share Document