Sophroneo: Fear not. A VR Horror Game with Thermal Feedback and Physiological Signal Loop.

Author(s):  
Kirill Ragozin ◽  
George Chernyshov ◽  
Dingding Zheng ◽  
Danny Hynds ◽  
Jianing Zhao ◽  
...  
Author(s):  
Chenguang Li ◽  
Hongjun Yang ◽  
Long Cheng

AbstractAs a relatively new physiological signal of brain, functional near-infrared spectroscopy (fNIRS) is being used more and more in brain–computer interface field, especially in the task of motor imagery. However, the classification accuracy based on this signal is relatively low. To improve the accuracy of classification, this paper proposes a new experimental paradigm and only uses fNIRS signals to complete the classification task of six subjects. Notably, the experiment is carried out in a non-laboratory environment, and movements of motion imagination are properly designed. And when the subjects are imagining the motions, they are also subvocalizing the movements to prevent distraction. Therefore, according to the motor area theory of the cerebral cortex, the positions of the fNIRS probes have been slightly adjusted compared with other methods. Next, the signals are classified by nine classification methods, and the different features and classification methods are compared. The results show that under this new experimental paradigm, the classification accuracy of 89.12% and 88.47% can be achieved using the support vector machine method and the random forest method, respectively, which shows that the paradigm is effective. Finally, by selecting five channels with the largest variance after empirical mode decomposition of the original signal, similar classification results can be achieved.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 27130-27139
Author(s):  
Zhiyuan Liu ◽  
Linghui Wu ◽  
Weina Fu

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 337
Author(s):  
Navneet Soin ◽  
Sam J. Fishlock ◽  
Colin Kelsey ◽  
Suzanne Smith

The use of rapid point-of-care (PoC) diagnostics in conjunction with physiological signal monitoring has seen tremendous progress in their availability and uptake, particularly in low- and middle-income countries (LMICs). However, to truly overcome infrastructural and resource constraints, there is an urgent need for self-powered devices which can enable on-demand and/or continuous monitoring of patients. The past decade has seen the rapid rise of triboelectric nanogenerators (TENGs) as the choice for high-efficiency energy harvesting for developing self-powered systems as well as for use as sensors. This review provides an overview of the current state of the art of such wearable sensors and end-to-end solutions for physiological and biomarker monitoring. We further discuss the current constraints and bottlenecks of these devices and systems and provide an outlook on the development of TENG-enabled PoC/monitoring devices that could eventually meet criteria formulated specifically for use in LMICs.


2017 ◽  
Vol 14 (3) ◽  
pp. 20161178-20161178 ◽  
Author(s):  
Long Chen ◽  
Xining Yang ◽  
Jianfeng Wu ◽  
Lingyan Fan

Sign in / Sign up

Export Citation Format

Share Document