scholarly journals Fugl-Meyer hand motor imagination recognition for brain–computer interfaces using only fNIRS

Author(s):  
Chenguang Li ◽  
Hongjun Yang ◽  
Long Cheng

AbstractAs a relatively new physiological signal of brain, functional near-infrared spectroscopy (fNIRS) is being used more and more in brain–computer interface field, especially in the task of motor imagery. However, the classification accuracy based on this signal is relatively low. To improve the accuracy of classification, this paper proposes a new experimental paradigm and only uses fNIRS signals to complete the classification task of six subjects. Notably, the experiment is carried out in a non-laboratory environment, and movements of motion imagination are properly designed. And when the subjects are imagining the motions, they are also subvocalizing the movements to prevent distraction. Therefore, according to the motor area theory of the cerebral cortex, the positions of the fNIRS probes have been slightly adjusted compared with other methods. Next, the signals are classified by nine classification methods, and the different features and classification methods are compared. The results show that under this new experimental paradigm, the classification accuracy of 89.12% and 88.47% can be achieved using the support vector machine method and the random forest method, respectively, which shows that the paradigm is effective. Finally, by selecting five channels with the largest variance after empirical mode decomposition of the original signal, similar classification results can be achieved.

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1486
Author(s):  
SuJin Bak ◽  
Jinwoo Park ◽  
Jaeyoung Shin ◽  
Jichai Jeong

Numerous open-access electroencephalography (EEG) datasets have been released and widely employed by EEG researchers. However, not many functional near-infrared spectroscopy (fNIRS) datasets are publicly available. More fNIRS datasets need to be freely accessible in order to facilitate fNIRS studies. Toward this end, we introduce an open-access fNIRS dataset for three-class classification. The concentration changes of oxygenated and reduced hemoglobin were measured, while 30 volunteers repeated each of the three types of overt movements (i.e., left- and right-hand unilateral complex finger-tapping, foot-tapping) for 25 times. The ternary support vector machine (SVM) classification accuracy obtained using leave-one-out cross-validation was estimated at 70.4% ± 18.4% on average. A total of 21 out of 30 volunteers scored a superior binary SVM classification accuracy (left-hand vs. right-hand finger-tapping) of over 80.0%. We believe that the introduced fNIRS dataset can facilitate future fNIRS studies.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jinuk Kwon ◽  
Chang-Hwan Im

Functional near-infrared spectroscopy (fNIRS) has attracted increasing attention in the field of brain–computer interfaces (BCIs) owing to their advantages such as non-invasiveness, user safety, affordability, and portability. However, fNIRS signals are highly subject-specific and have low test-retest reliability. Therefore, individual calibration sessions need to be employed before each use of fNIRS-based BCI to achieve a sufficiently high performance for practical BCI applications. In this study, we propose a novel deep convolutional neural network (CNN)-based approach for implementing a subject-independent fNIRS-based BCI. A total of 18 participants performed the fNIRS-based BCI experiments, where the main goal of the experiments was to distinguish a mental arithmetic task from an idle state task. Leave-one-subject-out cross-validation was employed to evaluate the average classification accuracy of the proposed subject-independent fNIRS-based BCI. As a result, the average classification accuracy of the proposed method was reported to be 71.20 ± 8.74%, which was higher than the threshold accuracy for effective BCI communication (70%) as well as that obtained using conventional shrinkage linear discriminant analysis (65.74 ± 7.68%). To achieve a classification accuracy comparable to that of the proposed subject-independent fNIRS-based BCI, 24 training trials (of approximately 12 min) were necessary for the traditional subject-dependent fNIRS-based BCI. It is expected that our CNN-based approach would reduce the necessity of long-term individual calibration sessions, thereby enhancing the practicality of fNIRS-based BCIs significantly.


Author(s):  
S. Srilekha ◽  
B. Vanathi

This paper focuses on electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) comparison to help the rehabilitation patients. Both methods have unique techniques and placement of electrodes. Usage of signals are different in application based on the economic conditions. This study helps in choosing the signal for the betterment of analysis. Ten healthy subject datasets of EEG & FNIRS are taken and applied to plot topography separately. Accuracy, Sensitivity, peaks, integral areas, etc are compared and plotted. The main advantages of this study are to prompt their necessities in the analysis of rehabilitation devices to manage their life as a typical individual.


2021 ◽  
Vol 11 (6) ◽  
pp. 701
Author(s):  
Cheng-Hsuan Chen ◽  
Kuo-Kai Shyu ◽  
Cheng-Kai Lu ◽  
Chi-Wen Jao ◽  
Po-Lei Lee

The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hedian Jin ◽  
Chunguang Li ◽  
Jiacheng Xu

Rehabilitation training is essential for motor dysfunction patients, and the training through their subjective motion intention, comparing to passive training, is more conducive to rehabilitation. This study proposes a method to identify motion intention of different walking states under the normal environment, by using the functional near-infrared spectroscopy (fNIRS) technology. Twenty-two healthy subjects were recruited to walk with three different gaits (including small-step with low-speed, small-step with midspeed, midstep with low-speed). The wavelet packet decomposition was used to find out the main characteristic channels in different motion states, and these channels with links in frequency and space were combined to define as feature vectors. According to different permutations and combinations of all feature vectors, a library for support vector machines (libSVM) was used to achieve the best recognition model. Finally, the accuracy rate of these three walking states was 78.79%. This study implemented the classification of different states’ motion intention by using the fNIRS technology. It laid a foundation to apply the classified motion intention of different states timely, to help severe motor dysfunction patients control a walking-assistive device for rehabilitation training, so as to help them restore independent walking abilities and reduce the economic burdens on society.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Noman Naseer ◽  
Nauman Khalid Qureshi ◽  
Farzan Majeed Noori ◽  
Keum-Shik Hong

We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest) using functional near-infrared spectroscopy (fNIRS) signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO) signals. Two- and three-dimensional combinations of those features were used for classification of mental tasks. In the classification, six different modalities, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),k-nearest neighbour (kNN), the Naïve Bayes approach, support vector machine (SVM), and artificial neural networks (ANN), were utilized. With these classifiers, the average classification accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6, 90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classification accuracies: 91.4 and 96.3%. In order to validate the results, a statistical significance test was performed, which confirmed that thepvalues were statistically significant relative to all of the other classifiers (p< 0.005) using HbO signals.


2018 ◽  
Vol 30 (02) ◽  
pp. 1850008 ◽  
Author(s):  
Mehrdad Dadgostar ◽  
Seyed Kamaledin Setarehdan ◽  
Sohrab Shahzadi ◽  
Ata Akin

In the present study, a classification of functional near-infrared spectroscopy (fNIRS) based on support vector machine (SVM) is presented. It is a non-invasive method monitoring human brain function by evaluating the concentration variation of oxy-hemoglobin and deoxy-hemoglobin. fNIRS is a functional optical imaging technology that measures the neural activities and hemodynamic responses in brain. The data were gathered from 11 healthy volunteers and 16 schizophrenia of the same average age by a 16-channel fNIRS (NIROXCOPE 301 system developed at the Neuro-Optical Imaging Laboratory, continuous-wave dual wavelength). Schizophrenia is a mental disorder that is characterized by mental processing collapse and weak emotional responses. This mental disorder is usually accompanied by a serious disturbance in social and occupational activities. The signals were initially preprocessed by DWT to remove any systemic physiological impediment. A preliminary examination by the genetic algorithm (GA) suggested that some channels of the recreated fNIRS signals required further investigation. The energy of these recreated channel signals was computed and utilized for signal arrangement. We used SVM-based classifier to determine the cases of schizophrenia. The result of six channels is higher than 16 channels. The results demonstrated a classification precision of about 87% in the discovery of schizophrenia in the healthy subjects.


2018 ◽  
Vol 71 (11) ◽  
pp. 868 ◽  
Author(s):  
Ross E. Darnell ◽  
Jagger J. Harvey ◽  
Glen P. Fox ◽  
Mary T. Fletcher ◽  
James Wainaina ◽  
...  

The aim of this study is to determine the value of near-infrared spectroscopy (NIRS) as a diagnostic tool for aflatoxin contamination, specifically to rapidly predict levels of aflatoxin, either quantitatively or qualitatively, in ground maize. Maize was collected from inoculated field trials conducted across four sites in Kenya. Inoculated and uninoculated maize ears were harvested, milled, and prepared for NIRS scanning and wet chemistry-based aflatoxin quantification. Several statistical and machine learning techniques were compared. Absorbance at a single bandwidth explained 34 % of the variation in levels of aflatoxin using a regression model while a partial least-squares (PLS) method showed that NIR measurements could explain 42 % of the variation in aflatoxin levels. To compare various methods for their ability to classify samples with high (>100 ppb) levels of aflatoxin, various additional procedures were applied. The k-nearest neighbour classification method yielded sensitivity and specificity values of 0.75 and 0.52 respectively, compared with the support vector machine method with estimates of 0.81 and 0.68, whereas PLS could achieve values of 0.82 and 0.72 respectively. The corresponding false positive and false negative values are still unacceptable for NIRS to be used with confidence, as ~18 % of contaminated ground maize samples would be accepted and 28 % of good maize would be discarded or declared contaminated or downgraded. However, such calibrations could be useful in breeding programs without access to wet chemistry analysis, seeking to rank entries semiquantitatively.


Photonics ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 90 ◽  
Author(s):  
Bosworth ◽  
Russell ◽  
Jacob

Over the past decade, the Human–Computer Interaction (HCI) Lab at Tufts University has been developing real-time, implicit Brain–Computer Interfaces (BCIs) using functional near-infrared spectroscopy (fNIRS). This paper reviews the work of the lab; we explore how we have used fNIRS to develop BCIs that are based on a variety of human states, including cognitive workload, multitasking, musical learning applications, and preference detection. Our work indicates that fNIRS is a robust tool for the classification of brain-states in real-time, which can provide programmers with useful information to develop interfaces that are more intuitive and beneficial for the user than are currently possible given today’s human-input (e.g., mouse and keyboard).


2021 ◽  
Vol 14 ◽  
Author(s):  
Kunqiang Qing ◽  
Ruisen Huang ◽  
Keum-Shik Hong

This study decodes consumers' preference levels using a convolutional neural network (CNN) in neuromarketing. The classification accuracy in neuromarketing is a critical factor in evaluating the intentions of the consumers. Functional near-infrared spectroscopy (fNIRS) is utilized as a neuroimaging modality to measure the cerebral hemodynamic responses. In this study, a specific decoding structure, called CNN-based fNIRS-data analysis, was designed to achieve a high classification accuracy. Compared to other methods, the automated characteristics, constant training of the dataset, and learning efficiency of the proposed method are the main advantages. The experimental procedure required eight healthy participants (four female and four male) to view commercial advertisement videos of different durations (15, 30, and 60 s). The cerebral hemodynamic responses of the participants were measured. To compare the preference classification performances, CNN was utilized to extract the most common features, including the mean, peak, variance, kurtosis, and skewness. Considering three video durations, the average classification accuracies of 15, 30, and 60 s videos were 84.3, 87.9, and 86.4%, respectively. Among them, the classification accuracy of 87.9% for 30 s videos was the highest. The average classification accuracies of three preferences in females and males were 86.2 and 86.3%, respectively, showing no difference in each group. By comparing the classification performances in three different combinations (like vs. so-so, like vs. dislike, and so-so vs. dislike) between two groups, male participants were observed to have targeted preferences for commercial advertising, and the classification performance 88.4% between “like” vs. “dislike” out of three categories was the highest. Finally, pairwise classification performance are shown as follows: For female, 86.1% (like vs. so-so), 87.4% (like vs. dislike), 85.2% (so-so vs. dislike), and for male 85.7, 88.4, 85.1%, respectively.


Sign in / Sign up

Export Citation Format

Share Document