scholarly journals Triboelectric Effect Enabled Self-Powered, Point-of-Care Diagnostics: Opportunities for Developing ASSURED and REASSURED Devices

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 337
Author(s):  
Navneet Soin ◽  
Sam J. Fishlock ◽  
Colin Kelsey ◽  
Suzanne Smith

The use of rapid point-of-care (PoC) diagnostics in conjunction with physiological signal monitoring has seen tremendous progress in their availability and uptake, particularly in low- and middle-income countries (LMICs). However, to truly overcome infrastructural and resource constraints, there is an urgent need for self-powered devices which can enable on-demand and/or continuous monitoring of patients. The past decade has seen the rapid rise of triboelectric nanogenerators (TENGs) as the choice for high-efficiency energy harvesting for developing self-powered systems as well as for use as sensors. This review provides an overview of the current state of the art of such wearable sensors and end-to-end solutions for physiological and biomarker monitoring. We further discuss the current constraints and bottlenecks of these devices and systems and provide an outlook on the development of TENG-enabled PoC/monitoring devices that could eventually meet criteria formulated specifically for use in LMICs.

2018 ◽  
Vol 90 (20) ◽  
pp. 11780-11784 ◽  
Author(s):  
Xiaowei Zhang ◽  
Yin Jing ◽  
Qingfeng Zhai ◽  
You Yu ◽  
Huanhuan Xing ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3715 ◽  
Author(s):  
Yaiza Montes-Cebrián ◽  
Albert Álvarez-Carulla ◽  
Jordi Colomer-Farrarons ◽  
Manel Puig-Vidal ◽  
Pere Ll. Miribel-Català

In this work, we present a self-powered electronic reader (e-reader) for point-of-care diagnostics based on the use of a fuel cell (FC) which works as a power source and as a sensor. The self-powered e-reader extracts the energy from the FC to supply the electronic components concomitantly, while performing the detection of the fuel concentration. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low power device without needing an external power source. Besides, the custom electronic instrumentation platform can process and display fuel concentration without requiring any type of laboratory equipment. In this study, we present the electronics system in detail and describe all modules that make up the system. Furthermore, we validate the device’s operation with different emulated FCs and sensors presented in the literature. The e-reader can be adjusted to numerous current ranges up to 3 mA, with a 13 nA resolution and an uncertainty of 1.8%. Besides, it only consumes 900 µW in the low power mode of operation, and it can operate with a minimum voltage of 330 mV. This concept can be extended to a wide range of fields, from biomedical to environmental applications.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 746
Author(s):  
Francois M. J. Lamoury ◽  
Richard Njouom ◽  
Marie Amougou-Atsama ◽  
Euloge Yiagnigni Mfopou ◽  
Nino Berishvili ◽  
...  

Point-of-care diagnostics have the potential to increase diagnosis and linkage to care and help reach the WHO targets to eliminate hepatitis C virus (HCV) by 2030. Here, we evaluated the diagnostic accuracy of Genedrive HCV ID assay for the qualitative detection of HCV RNA in decentralized settings in two low- and middle-income countries using fresh plasma specimens from 426 participants. The Abbott RealTime HCV assay was used as the gold standard. Genedrive HCV ID assay was conducted by different users. Users also completed questionnaires to assess the usability of Genedrive. At detection thresholds of 12 IU/mL or 30 IU/mL, 1000 IU/mL, and 2362 IU/mL, the sensitivity was 96.2% (95% CI: 92.7–98.4), 100% (98.2–100), and 100% (98.2–100), respectively; the specificity was 99.5% (95% CI: 97.4–100), 99.5% (97.5–100), and 98.7% (96.1–100), respectively. All genotypes detected using the gold-standard assay were also detected with Genedrive. Users found Genedrive easy to use. Genedrive is a simple and accurate test to confirm chronic HCV infection in decentralized, real-life, resource-limited settings. This novel diagnostic tool could contribute to closing the current gap in HCV diagnosis.


Nano Energy ◽  
2021 ◽  
Vol 82 ◽  
pp. 105725
Author(s):  
Wanyu Shang ◽  
Guangqin Gu ◽  
Wenhe Zhang ◽  
Hongchun Luo ◽  
Tingyu Wang ◽  
...  

2018 ◽  
Vol 118 ◽  
pp. 88-96 ◽  
Author(s):  
Yaiza Montes-Cebrián ◽  
Lorena del Torno-de Román ◽  
Albert Álvarez-Carulla ◽  
Jordi Colomer-Farrarons ◽  
Shelley D. Minteer ◽  
...  

2019 ◽  
Vol 26 (11) ◽  
pp. 1946-1959 ◽  
Author(s):  
Le Minh Tu Phan ◽  
Lemma Teshome Tufa ◽  
Hwa-Jung Kim ◽  
Jaebeom Lee ◽  
Tae Jung Park

Background:Tuberculosis (TB), one of the leading causes of death worldwide, is difficult to diagnose based only on signs and symptoms. Methods for TB detection are continuously being researched to design novel effective clinical tools for the diagnosis of TB.Objective:This article reviews the methods to diagnose TB at the latent and active stages and to recognize prospective TB diagnostic methods based on nanomaterials.Methods:The current methods for TB diagnosis were reviewed by evaluating their advantages and disadvantages. Furthermore, the trends in TB detection using nanomaterials were discussed regarding their performance capacity for clinical diagnostic applications.Results:Current methods such as microscopy, culture, and tuberculin skin test are still being employed to diagnose TB, however, a highly sensitive point of care tool without false results is still needed. The utilization of nanomaterials to detect the specific TB biomarkers with high sensitivity and specificity can provide a possible strategy to rapidly diagnose TB. Although it is challenging for nanodiagnostic platforms to be assessed in clinical trials, active TB diagnosis using nanomaterials is highly expected to achieve clinical significance for regular application. In addition, aspects and future directions in developing the high-efficiency tools to diagnose active TB using advanced nanomaterials are expounded.Conclusion:This review suggests that nanomaterials have high potential as rapid, costeffective tools to enhance the diagnostic sensitivity and specificity for the accurate diagnosis, treatment, and prevention of TB. Hence, portable nanobiosensors can be alternative effective tests to be exploited globally after clinical trial execution.


Sign in / Sign up

Export Citation Format

Share Document