Exploring the effect of transient cognitive load on bodily arousal and secondary task performance

Author(s):  
Jan Ehlers
2014 ◽  
Vol 36 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Stephan Dutke ◽  
Thomas Jaitner ◽  
Timo Berse ◽  
Jonathan Barenberg

Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.


2015 ◽  
Vol 20 (5) ◽  
pp. 1237-1253 ◽  
Author(s):  
Faizal A. Haji ◽  
Rabia Khan ◽  
Glenn Regehr ◽  
James Drake ◽  
Sandrine de Ribaupierre ◽  
...  

Author(s):  
Bastien Trémolière ◽  
Marie-Ève Gagnon ◽  
Isabelle Blanchette

Abstract. Although the detrimental effect of emotion on reasoning has been evidenced many times, the cognitive mechanism underlying this effect remains unclear. In the present paper, we explore the cognitive load hypothesis as a potential explanation. In an experiment, participants solved syllogistic reasoning problems with either neutral or emotional contents. Participants were also presented with a secondary task, for which the difficult version requires the mobilization of cognitive resources to be correctly solved. Participants performed overall worse and took longer on emotional problems than on neutral problems. Performance on the secondary task, in the difficult version, was poorer when participants were reasoning about emotional, compared to neutral contents, consistent with the idea that processing emotion requires more cognitive resources. Taken together, the findings afford evidence that the deleterious effect of emotion on reasoning is mediated by cognitive load.


Author(s):  
Natasha Merat ◽  
A. Hamish Jamson ◽  
Frank C. H. Lai ◽  
Oliver Carsten

Author(s):  
Holland M. Vasquez ◽  
Justin G. Hollands ◽  
Greg A. Jamieson

Some previous research using a new augmented reality map display called Mirror-in-the-Sky (MitS) showed that performance was worse and mental workload (MWL) greater with MitS relative to a track-up map for navigation and wayfinding tasks. The purpose of the current study was to determine—for both MitS and track-up map—how much performance improves and MWL decreases with practice in a simple navigation task. We conducted a three-session experiment in which twenty participants completed a route following task in a virtual environment. Task completion times and collisions decreased, subjective MWL decreased, and secondary task performance improved with practice. The NASA-TLX Global ratings and Detection Response Task Hit Rates showed a larger decrease in MWL with MitS than the track-up map. Additionally, means for performance and workload measures showed that differences between the MitS and track-up map decreased in the first session. In later sessions the differences between the MitS and track-up map were negligible. As such, with practice performance and MWL may be comparable to a traditional track-up map.


1974 ◽  
Vol 103 (6) ◽  
pp. 1074-1079 ◽  
Author(s):  
David W. Martin ◽  
Richard T. Kelly

1992 ◽  
Vol 36 (18) ◽  
pp. 1398-1402
Author(s):  
Pamela S. Tsang ◽  
Tonya L. Shaner

The secondary task technique was used to test two alternative explanations of dual task decrement: outcome conflict and resource allocation. Subjects time-shared a continuous tracking task and a discrete Sternberg memory task. The memory probes were presented under three temporal predictability conditions. Dual task performance decrements in both the tracking and memory tasks suggested that the two tasks competed for some common resources, processes, or mechanisms. Although performance decrements were consistent with both the outcome conflict and resource allocation explanations, the two explanations propose different mechanisms by which the primary task could be protected from interference from the concurrent secondary task. The primary task performance could be protected by resource allocation or by strategic sequencing of the processing of the two tasks in order to avoid outcome conflict. In addition to examining the global trial means, moment-by-moment tracking error time-locked to the memory probe was also analyzed. There was little indication that the primary task was protected by resequencing of the processing of the two tasks. This together with the suggestion that predictable memory probes led to better protected primary task performance than less predictable memory probes lend support for the resource explanation.


Author(s):  
Walter W. Wierwille ◽  
James C. Gutmann

In a previously reported experiment involving a moving base driving simulator with computer-generated display, secondary task measures of workload showed significant increases as a function of large changes in vehicle dynamics and disturbance levels. Because the secondary task measures appeared less sensitive than desired, driving performance measures recorded during the same experiment were later analyzed. Particular emphasis in examining the driving performance data was placed on (1) determining the degree of intrusion of the secondary task on the driving task as a function of the independent variables, and (2) on comparing the sensitivity of the primary and secondary task measures. The results showed the secondary task does intrude significantly upon the driving task performance at low workload levels, but that it does not significantly intrude at high workload levels. Also, when the four primary task measures were analyzed for sensitivity to the independent variables, new information was obtained indicating greater sensitivity than is obtained with the single secondary task measure. Steering ratio, for example, is found to affect performance at high disturbance levels—a result not obtained in examining the secondary task by itself. The merits of primary and secondary task performance analysis are discussed, and suggestions are made for future work.


Sign in / Sign up

Export Citation Format

Share Document