Measuring cognitive load during simulation-based psychomotor skills training: sensitivity of secondary-task performance and subjective ratings

2015 ◽  
Vol 20 (5) ◽  
pp. 1237-1253 ◽  
Author(s):  
Faizal A. Haji ◽  
Rabia Khan ◽  
Glenn Regehr ◽  
James Drake ◽  
Sandrine de Ribaupierre ◽  
...  
2014 ◽  
Vol 36 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Stephan Dutke ◽  
Thomas Jaitner ◽  
Timo Berse ◽  
Jonathan Barenberg

Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.


Author(s):  
Bastien Trémolière ◽  
Marie-Ève Gagnon ◽  
Isabelle Blanchette

Abstract. Although the detrimental effect of emotion on reasoning has been evidenced many times, the cognitive mechanism underlying this effect remains unclear. In the present paper, we explore the cognitive load hypothesis as a potential explanation. In an experiment, participants solved syllogistic reasoning problems with either neutral or emotional contents. Participants were also presented with a secondary task, for which the difficult version requires the mobilization of cognitive resources to be correctly solved. Participants performed overall worse and took longer on emotional problems than on neutral problems. Performance on the secondary task, in the difficult version, was poorer when participants were reasoning about emotional, compared to neutral contents, consistent with the idea that processing emotion requires more cognitive resources. Taken together, the findings afford evidence that the deleterious effect of emotion on reasoning is mediated by cognitive load.


2018 ◽  
Author(s):  
Tamer Abdel Moaein ◽  
Chirsty Tompkins ◽  
Natalie Bandrauk ◽  
Heidi Coombs-Thorne

BACKGROUND Clinical simulation is defined as “a technique to replace or amplify real experiences with guided experiences, often immersive in nature, that evoke or replicate substantial aspects of the real world in a fully interactive fashion”. In medicine, its advantages include repeatability, a nonthreatening environment, absence of the need to intervene for patient safety issues during critical events, thus minimizing ethical concerns and promotion of self-reflection with facilitation of feedback [1] Apparently, simulation based education is a standard tool for introducing procedural skills in residency training [3]. However, while performance is clearly enhanced in the simulated setting, there is little information available on the translation of these skills to the actual patient care environment (transferability) and the retention rates of skills acquired in simulation-based training [1]. There has been significant interest in using simulation for both learning and assessment [2]. As Canadian internal medicine training programs are moving towards assessing entrustable professional activities (EPA), simulation will become imperative for training, assessment and identifying opportunities for improvement [4, 5]. Hence, it is crucial to assess the current state of skill learning, acquisition and retention in Canadian IM residency training programs. Also, identifying any challenges to consolidating these skills. We hope the results of this survey would provide material that would help in implementing an effective and targeted simulation-based skill training (skill mastery). OBJECTIVE 1. Appraise the status and impact of existing simulation training on procedural skill performance 2. Identify factors that might interfere with skill acquisition, consolidation and transferability METHODS An electronic bilingual web-based survey; Fluid survey platform utilized, was designed (Appendix 1). It consists of a mix of closed-ended, open-ended and check list questions to examine the attitudes, perceptions, experiences and feedback of internal medicine (IM) residents. The survey has been piloted locally with a sample of five residents. After making any necessary corrections, it will be distributed via e-mail to the program directors of all Canadian IM residency training programs, then to all residents registered in each program. Two follow up reminder e-mails will be sent to all participating institutions. Participation will be voluntarily and to keep anonymity, there will be no direct contact with residents and survey data will be summarized in an aggregate form. SPSS Software will be used for data analysis, and results will be shared with all participating institutions. The survey results will be used for display and presentation purposes during medical conferences and forums and might be submitted for publication. All data will be stored within the office of internal medicine program at Memorial University for a period of five years. Approval of Local Research Ethics board (HREB) at Memorial University has been obtained. RESULTS Pilot Results Residents confirmed having simulation-based training for many of the core clinical skills, although some gaps persist There was some concern regarding the number of sim sessions, lack of clinical opportunities, competition by other services and lack of bed side supervision Some residents used internet video to fill their training gaps and/or increase their skill comfort level before performing clinical procedure Resident feedback included desire for more corrective feedback, and more sim sessions per skill (Average 2-4 sessions) CONCLUSIONS This study is anticipated to provide data on current practices for skill development in Canadian IM residency training programs. Information gathered will be used to foster a discourse between training programs including discussion of barriers, sharing of solutions and proposing recommendations for optimal use of simulation in the continuum of procedural skills training.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Sally Byford ◽  
Sarah Janssens ◽  
Rachel Cook

Abstract Background Transvaginal ultrasound (TVUS) training opportunities are limited due to its intimate nature; however, TVUS is an important component of early pregnancy assessment. Simulation can bridge this learning gap. Aim To describe and measure the effect of a transvaginal ultrasound simulation programme for obstetric registrars. Materials and methods The transvaginal ultrasound simulation training (TRUSST) curriculum consisted of supported practice using virtual reality transvaginal simulators (ScanTrainer, Medaphor) and communication skills training to assist obstetric registrars in obtaining required competencies to accurately and holistically care for women with early pregnancy complications. Trainee experience of live transvaginal scanning was evaluated with a questionnaire. Programme evaluation was by pre-post self-reported confidence level and objective pre-post training assessment using Objective Structured Assessment of Ultrasound Skills (OSAUS) and modified Royal Australian and New Zealand College of Obstetrics and Gynaecology assessment scores. Quantitative data was compared using paired t tests. Results Fifteen obstetric registrars completed the programme. Numbers of performed live transvaginal ultrasound by trainees were low. Participants reported an increase in confidence level in performing a TVUS following training: mean pre score 1.6/5, mean post score 3/5. Objective assessments improved significantly across both OSAUS and RANZCOG scores following training; mean improvement scores 7.6 points (95% CI 6.2–8.9, p < 0.05) and 32.5 (95% CI 26.4–38.6, p < 0.05) respectively. It was noted that scores for a systematic approach and documentation were most improved: 1.9 (95% CI 1.4–2.5, p < 0.05) and 2.1 (95% CI 1.5–2.7, p < 0.05) respectively. Conclusion The implementation of a simulation-based training curriculum resulted in improved confidence and ability in TVUS scanning, especially with regard to a systematic approach and documentation.


Author(s):  
Natasha Merat ◽  
A. Hamish Jamson ◽  
Frank C. H. Lai ◽  
Oliver Carsten

Author(s):  
Holland M. Vasquez ◽  
Justin G. Hollands ◽  
Greg A. Jamieson

Some previous research using a new augmented reality map display called Mirror-in-the-Sky (MitS) showed that performance was worse and mental workload (MWL) greater with MitS relative to a track-up map for navigation and wayfinding tasks. The purpose of the current study was to determine—for both MitS and track-up map—how much performance improves and MWL decreases with practice in a simple navigation task. We conducted a three-session experiment in which twenty participants completed a route following task in a virtual environment. Task completion times and collisions decreased, subjective MWL decreased, and secondary task performance improved with practice. The NASA-TLX Global ratings and Detection Response Task Hit Rates showed a larger decrease in MWL with MitS than the track-up map. Additionally, means for performance and workload measures showed that differences between the MitS and track-up map decreased in the first session. In later sessions the differences between the MitS and track-up map were negligible. As such, with practice performance and MWL may be comparable to a traditional track-up map.


Sign in / Sign up

Export Citation Format

Share Document