DIO messages and trickle timer analysis of RPL routing protocol for UAV-assisted data collection in IoT

Author(s):  
Bishmita Hazarika ◽  
Rakesh Matam ◽  
Mithun Mukherjee ◽  
Varun G Menon
2021 ◽  
Vol 14 (1) ◽  
pp. 400-409
Author(s):  
Mohamed Borham ◽  
◽  
Ghada Khoriba ◽  
Mostafa-Sami Mostafa ◽  
◽  
...  

Due to the energy limitation in Wireless Sensor Networks (WSNs), most researches related to data collection in WSNs focus on how to collect the maximum amount of data from the network with minimizing the energy consumption as much as possible. Many types of research that are related to data collection are proposed to overcome this issue by using mobility with path constrained as Maximum Amount Shortest Path routing Protocol (MASP) and zone-based algorithms. Recently, Zone-based Energy-Aware Data Collection Protocol (ZEAL) and Enhanced ZEAL have been presented to reduce energy consumption and provide an acceptable data delivery rate. However, the time spent on data collection operations should be taken into account, especially concerning real-time systems, as time is the most critical factor for these systems' performance. In this paper, a routing protocol is proposed to improve the time needed for the data collection process considering less energy consumption. The presented protocol uses a novel path with a communication time-slot assignment algorithm to reduce the count of cycles that are needed for the data collection process with reduction of 50% of the number of cycles needed for other protocols. Therefore, the time and energy needed for data collection are reduced by approximately 25%and 6% respectively, which prolongs the network lifetime. The proposed protocol is called Energy-Time Aware Data Collection Protocol (ETCL).


IEEE Access ◽  
2016 ◽  
Vol 4 ◽  
pp. 8476-8486 ◽  
Author(s):  
Guisong Yang ◽  
Huifen Xu ◽  
Xingyu He ◽  
Liping Gao ◽  
Yishuang Geng ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
pp. 18 ◽  
Author(s):  
Jinpeng Wang ◽  
Gérard Chalhoub ◽  
Michel Misson

Recently, mobility support has become an important requirement in various Wireless Sensor Networks (WSNs). Low-power and Lossy Networks (LLNs) are a special type of WSNs that tolerate a certain degree of packet loss. However, due to the strict resource constraints in the computation, energy, and memory of LLNs, most routing protocols only support static network topologies. Data collection and data dissemination are two basic traffic modes in LLNs. Unlike data collection, data dissemination is less investigated in LLNs. There are two sorts of data-dissemination methods: point-to-multipoint and point-to-point. In this paper, we focus on the point-to-point method, which requires the source node to build routes to reach the destination node. We propose an adaptive routing protocol that integrates together point-to-point traffic and data-collection traffic, and supports highly mobile scenarios. This protocol quickly reacts to the movement of nodes to make faster decisions for the next-hop selection in data collection and dynamically build routes for point-to-point traffic. Results obtained through simulation show that our work outperforms two generic ad hoc routing protocols AODV and flooding on different performance metrics. Results also show the efficiency of our work in highly mobile scenarios with multiple traffic patterns.


Sign in / Sign up

Export Citation Format

Share Document