X-ray Image Classification Using Two-step DenseNet Classifiers

Author(s):  
Diullei Gomes ◽  
Isah Abdullahi Lawal
Keyword(s):  
Author(s):  
Tengku Afiah Mardhiah Tengku Zainul Akmal ◽  
Joel Chia Ming Than ◽  
Haslailee Abdullah ◽  
Norliza Mohd Noor

Author(s):  
Vishu Madaan ◽  
Aditya Roy ◽  
Charu Gupta ◽  
Prateek Agrawal ◽  
Anand Sharma ◽  
...  

AbstractCOVID-19 (also known as SARS-COV-2) pandemic has spread in the entire world. It is a contagious disease that easily spreads from one person in direct contact to another, classified by experts in five categories: asymptomatic, mild, moderate, severe, and critical. Already more than 66 million people got infected worldwide with more than 22 million active patients as of 5 December 2020 and the rate is accelerating. More than 1.5 million patients (approximately 2.5% of total reported cases) across the world lost their life. In many places, the COVID-19 detection takes place through reverse transcription polymerase chain reaction (RT-PCR) tests which may take longer than 48 h. This is one major reason of its severity and rapid spread. We propose in this paper a two-phase X-ray image classification called XCOVNet for early COVID-19 detection using convolutional neural Networks model. XCOVNet detects COVID-19 infections in chest X-ray patient images in two phases. The first phase pre-processes a dataset of 392 chest X-ray images of which half are COVID-19 positive and half are negative. The second phase trains and tunes the neural network model to achieve a 98.44% accuracy in patient classification.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Minh Thanh Vo ◽  
Anh H. Vo ◽  
Tuong Le

PurposeMedical images are increasingly popular; therefore, the analysis of these images based on deep learning helps diagnose diseases become more and more essential and necessary. Recently, the shoulder implant X-ray image classification (SIXIC) dataset that includes X-ray images of implanted shoulder prostheses produced by four manufacturers was released. The implant's model detection helps to select the correct equipment and procedures in the upcoming surgery.Design/methodology/approachThis study proposes a robust model named X-Net to improve the predictability for shoulder implants X-ray image classification in the SIXIC dataset. The X-Net model utilizes the Squeeze and Excitation (SE) block integrated into Residual Network (ResNet) module. The SE module aims to weigh each feature map extracted from ResNet, which aids in improving the performance. The feature extraction process of X-Net model is performed by both modules: ResNet and SE modules. The final feature is obtained by incorporating the extracted features from the above steps, which brings more important characteristics of X-ray images in the input dataset. Next, X-Net uses this fine-grained feature to classify the input images into four classes (Cofield, Depuy, Zimmer and Tornier) in the SIXIC dataset.FindingsExperiments are conducted to show the proposed approach's effectiveness compared with other state-of-the-art methods for SIXIC. The experimental results indicate that the approach outperforms the various experimental methods in terms of several performance metrics. In addition, the proposed approach provides the new state of the art results in all performance metrics, such as accuracy, precision, recall, F1-score and area under the curve (AUC), for the experimental dataset.Originality/valueThe proposed method with high predictive performance can be used to assist in the treatment of injured shoulder joints.


2007 ◽  
Vol 7 (8) ◽  
pp. 1224-1229 ◽  
Author(s):  
A. Mueen ◽  
M. Sapiyan Baba ◽  
R. Zainuddin

2013 ◽  
Vol 27 (1) ◽  
pp. 77-89 ◽  
Author(s):  
Mohammad Reza Zare ◽  
Ahmed Mueen ◽  
Woo Chaw Seng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document