Local Constraint and Label Embedding Multi-layer Dictionary Learning for Sperm Head Classification

Author(s):  
Tongguang Ni ◽  
Yan Ding ◽  
Jing Xue ◽  
Kaijian Xia ◽  
Xiaoqing Gu ◽  
...  

Morphological classification of human sperm heads is a key technology for diagnosing male infertility. Due to its sparse representation and learning capability, dictionary learning has shown remarkable performance in human sperm head classification. To promote the discriminability of the classification model, a novel local constraint and label embedding multi-layer dictionary learning model called LCLM-MDL is proposed in this study. Based on the multi-layer dictionary learning framework, two dictionaries are built on the basis of Laplacian regularized constraint and label embedding term in each layer, and the two dictionaries are approximated to each other as much as possible, so as to well exploit the nonlinear structure and discriminability features of the morphology of human sperm heads. In addition, to promote the robustness of the model, the asymmetric Huber loss is adopted in the last layer of LCLM-MDL, which approximates the misclassification error by using the absolute error function. Finally, the experimental results on HuSHeM dataset demonstrate the validity of the LCLM-MDL.

2020 ◽  
Vol 22 (4) ◽  
pp. 401
Author(s):  
MaríaPaz Herráez ◽  
Silvia González-Rojo ◽  
Cristina Fernández-Díez ◽  
Marta Lombó

Author(s):  
Han-joon Kim

This chapter introduces two practical techniques for improving Naïve Bayes text classifiers that are widely used for text classification. The Naïve Bayes has been evaluated to be a practical text classification algorithm due to its simple classification model, reasonable classification accuracy, and easy update of classification model. Thus, many researchers have a strong incentive to improve the Naïve Bayes by combining it with other meta-learning approaches such as EM (Expectation Maximization) and Boosting. The EM approach is to combine the Naïve Bayes with the EM algorithm and the Boosting approach is to use the Naïve Bayes as a base classifier in the AdaBoost algorithm. For both approaches, a special uncertainty measure fit for Naïve Bayes learning is used. In the Naïve Bayes learning framework, these approaches are expected to be practical solutions to the problem of lack of training documents in text classification systems.


2021 ◽  
pp. 177-191
Author(s):  
Natalia V. Revollo ◽  
G. Noelia Revollo Sarmiento ◽  
Claudio Delrieux ◽  
Marcela Herrera ◽  
Rolando González-José

2020 ◽  
Vol 398 ◽  
pp. 505-519 ◽  
Author(s):  
Yali Peng ◽  
Shigang Liu ◽  
Xili Wang ◽  
Xiaojun Wu

2012 ◽  
Vol 98 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Atsushi Tanaka ◽  
Motoi Nagayoshi ◽  
Izumi Tanaka ◽  
Hiroshi Kusunoki

1998 ◽  
Vol 70 (5) ◽  
pp. 883-891 ◽  
Author(s):  
Nabil Aziz ◽  
Simon Fear ◽  
Clare Taylor ◽  
Charles R Kingsland ◽  
D.Iwan Lewis-Jones

2017 ◽  
Vol 84 ◽  
pp. 205-216 ◽  
Author(s):  
Violeta Chang ◽  
Laurent Heutte ◽  
Caroline Petitjean ◽  
Steffen Härtel ◽  
Nancy Hitschfeld

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Caixia Zheng ◽  
Fan Zhang ◽  
Huirong Hou ◽  
Chao Bi ◽  
Ming Zhang ◽  
...  

Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required in many fields. This paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the traditional classifiers (e.g., SVM andK-NN), we use discriminative dictionary learning as the classification model for weather, which could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.


Author(s):  
S. Boeke ◽  
M. J. C. van den Homberg ◽  
A. Teklesadik ◽  
J. L. D. Fabila ◽  
D. Riquet ◽  
...  

Abstract. Reliable predictions of the impact of natural hazards turning into a disaster is important for better targeting humanitarian response as well as for triggering early action. Open data and machine learning can be used to predict loss and damage to the houses and livelihoods of affected people. This research focuses on agricultural loss, more specifically rice loss in the Philippines due to typhoons. Regression and binary classification algorithms are trained using feature selection methods to find the most important explanatory features. Both geographical data from every province, and typhoon specific features of 11 historical typhoons are used as input. The percentage of lost rice area is considered as the output, with an average value of 7.1%. As for the regression task, the support vector regressor performed best with a Mean Absolute Error of 6.83 percentage points. For the classification model, thresholds of 20%, 30% and 40% are tested in order to find the best performing model. These thresholds represent different levels of lost rice fields for triggering anticipatory action towards farmers. The binary classifiers are trained to increase its ability to rightly predict the positive samples. In all three cases, the support vector classifier performed the best with a recall score of 88%, 75% and 81.82%, respectively. However, the precision score for each of these models was low: 17.05%, 14.46% and 10.84%, respectively. For both the support vector regressor and classifier, of all 14 available input features, only wind speed was selected as explanatory feature. Yet, for the other algorithms that were trained in this study, other sets of features were selected depending also on the hyperparameter settings. This variation in selected feature sets as well as the imprecise predictions were consequences of the small dataset that was used for this study. It is therefore important that data for more typhoons as well as data on other explanatory variables are gathered in order to make more robust and accurate predictions. Also, if loss data becomes available on municipality-level, rather than province-level, the models will become more accurate and valuable for operationalization.


Sign in / Sign up

Export Citation Format

Share Document