On β-Plurality Points in Spatial Voting Games

2021 ◽  
Vol 17 (3) ◽  
pp. 1-21
Author(s):  
Boris Aronov ◽  
Mark De Berg ◽  
Joachim Gudmundsson ◽  
Michael Horton

Let V be a set of n points in mathcal R d , called voters . A point p ∈ mathcal R d is a plurality point for V when the following holds: For every q ∈ mathcal R d , the number of voters closer to p than to q is at least the number of voters closer to q than to p . Thus, in a vote where each  v ∈ V votes for the nearest proposal (and voters for which the proposals are at equal distance abstain), proposal  p will not lose against any alternative proposal  q . For most voter sets, a plurality point does not exist. We therefore introduce the concept of β-plurality points , which are defined similarly to regular plurality points, except that the distance of each voter to p (but not to  q ) is scaled by a factor  β , for some constant 0< β ⩽ 1. We investigate the existence and computation of β -plurality points and obtain the following results. • Define β * d := {β : any finite multiset V in mathcal R d admits a β-plurality point. We prove that β * d = √3/2, and that 1/√ d ⩽ β * d ⩽ √ 3/2 for all d ⩾ 3. • Define β ( p, V ) := sup {β : p is a β -plurality point for V }. Given a voter set V in mathcal R 2 , we provide an algorithm that runs in O ( n log n ) time and computes a point p such that β ( p , V ) ⩾ β * b . Moreover, for d ⩾ 2, we can compute a point  p with β ( p , V ) ⩾ 1/√ d in O ( n ) time. • Define β ( V ) := sup { β : V admits a β -plurality point}. We present an algorithm that, given a voter set V in mathcal R d , computes an ((1-ɛ)ċ β ( V ))-plurality point in time O n 2 ɛ 3d-2 ċ log n ɛ d-1 ċ log 2 1ɛ).

2012 ◽  
Vol 41 (1) ◽  
pp. 43-71 ◽  
Author(s):  
Scott L. Feld ◽  
Joseph Godfrey ◽  
Bernard Grofman

Author(s):  
Joachim Gudmundsson ◽  
Sampson Wong

The yolk is an important concept in spatial voting games: the yolk center generalises the equilibrium and the yolk radius bounds the uncovered set. We present near-linear time algorithms for computing the yolk in the plane. To the best of our knowledge our algorithm is the first that does not precompute median lines, and hence is able to break the best known upper bound of O(n4/3) on the number of limiting median lines. We avoid this requirement by carefully applying Megiddo’s parametric search technique, which is a powerful framework that could lead to faster algorithms for other spatial voting problems.


1988 ◽  
Vol 82 (1) ◽  
pp. 195-211 ◽  
Author(s):  
Norman Schofield ◽  
Bernard Grofman ◽  
Scott L. Feld

The core of a voting game is the set of undominated outcomes, that is, those that once in place cannot be overturned. For spatial voting games, a core is structurally stable if it remains in existence even if there are small perturbations in the location of voter ideal points. While for simple majority rule a core will exist in games with more than one dimension only under extremely restrictive symmetry conditions, we show that, for certain supramajorities, a core must exist. We also provide conditions under which it is possible to construct a structurally stable core. If there are only a few dimensions, our results demonstrate the stability properties of such frequently used rules as two-thirds and three-fourths. We further explore the implications of our results for the nature of political stability by looking at outcomes in experimental spatial voting games and at Belgian cabinet formation in the late 1970s.


1989 ◽  
Vol 12 (4-5) ◽  
pp. 405-416 ◽  
Author(s):  
Scott L. Feld ◽  
Bernard Grofman ◽  
Nicholas R. Miller

2014 ◽  
Vol 83 (2) ◽  
pp. 120-134
Author(s):  
Rudolf Berghammer ◽  
Agnieszka Rusinowska ◽  
Harrie de Swart

Public Choice ◽  
1991 ◽  
Vol 70 (2) ◽  
pp. 245-250
Author(s):  
Scott L. Feld ◽  
Bernard Grofman
Keyword(s):  

2011 ◽  
Vol 19 (3) ◽  
pp. 306-324 ◽  
Author(s):  
Joseph Godfrey ◽  
Bernard Grofman ◽  
Scott L. Feld

The Shapley-Owen value (SOV, Owen and Shapley 1989, Optimal location of candidates in ideological space. International Journal of Game Theory 125–42), a generalization of the Shapley-Shubik value applicable to spatial voting games, is an important concept in that it takes us away from a priori concepts of power to notions of power that are directly tied to the ideological proximity of actors. SOVs can also be used to locate the spatial analogue to the Copeland winner, the strong point, the point with smallest win-set, which is a plausible solution concept for games without cores. However, for spatial voting games with many voters, until recently, it was too computationally difficult to calculate SOVs, and thus, it was impossible to find the strong point analytically. After reviewing the properties of the SOV, such as the result proven by Shapley and Owen that size of win sets increases with the square of distance as we move away from the strong point along any ray, we offer a computer algorithm for computing SOVs that can readily find such values even for legislatures the size of the U.S. House of Representatives or the Russian Duma. We use these values to identify the strong point and show its location with respect to the uncovered set, for several of the U.S. congresses analyzed in Bianco, Jeliazkov, and Sened (2004, The limits of legislative actions: Determining the set of enactable outcomes given legislators preferences. Political Analysis 12:256–76) and for several sessions of the Russian Duma. We then look at many of the experimental committee voting games previously analyzed by Bianco et al. (2006, A theory waiting to be discovered and used: A reanalysis of canonical experiments on majority-rule decision making. Journal of Politics 68:838–51) and show how outcomes in these games tend to be points with small win sets located near to the strong point. We also consider how SOVs can be applied to a lobbying game in a committee of the U.S. Senate.


Sign in / Sign up

Export Citation Format

Share Document