The Core and the Stability of Group Choice in Spatial Voting Games

1988 ◽  
Vol 82 (1) ◽  
pp. 195-211 ◽  
Author(s):  
Norman Schofield ◽  
Bernard Grofman ◽  
Scott L. Feld

The core of a voting game is the set of undominated outcomes, that is, those that once in place cannot be overturned. For spatial voting games, a core is structurally stable if it remains in existence even if there are small perturbations in the location of voter ideal points. While for simple majority rule a core will exist in games with more than one dimension only under extremely restrictive symmetry conditions, we show that, for certain supramajorities, a core must exist. We also provide conditions under which it is possible to construct a structurally stable core. If there are only a few dimensions, our results demonstrate the stability properties of such frequently used rules as two-thirds and three-fourths. We further explore the implications of our results for the nature of political stability by looking at outcomes in experimental spatial voting games and at Belgian cabinet formation in the late 1970s.

2006 ◽  
Vol 08 (04) ◽  
pp. 643-654 ◽  
Author(s):  
MATHIEU MARTIN ◽  
VINCENT MERLIN

This paper deals with the non-emptiness of the stability set for any proper voting game. We present an upper bound on the number of alternatives which guarantees the non emptiness of this solution concept. We show that this bound is greater than or equal to the one given by Le Breton and Salles (1990) for quota games.


2014 ◽  
Vol 11 (100) ◽  
pp. 20140693 ◽  
Author(s):  
Serguei Saavedra ◽  
Rudolf P. Rohr ◽  
Luis J. Gilarranz ◽  
Jordi Bascompte

The stability analysis of socioeconomic systems has been centred on answering whether small perturbations when a system is in a given quantitative state will push the system permanently to a different quantitative state. However, typically the quantitative state of socioeconomic systems is subject to constant change. Therefore, a key stability question that has been under-investigated is how strongly the conditions of a system itself can change before the system moves to a qualitatively different behaviour, i.e. how structurally stable the systems is. Here, we introduce a framework to investigate the structural stability of socioeconomic systems formed by a network of interactions among agents competing for resources. We measure the structural stability of the system as the range of conditions in the distribution and availability of resources compatible with the qualitative behaviour in which all the constituent agents can be self-sustained across time. To illustrate our framework, we study an empirical representation of the global socioeconomic system formed by countries sharing and competing for multinational companies used as proxy for resources. We demonstrate that the structural stability of the system is inversely associated with the level of competition and the level of heterogeneity in the distribution of resources. Importantly, we show that the qualitative behaviour of the observed global socioeconomic system is highly sensitive to changes in the distribution of resources. We believe that this work provides a methodological basis to develop sustainable strategies for socioeconomic systems subject to constantly changing conditions.


Author(s):  
Norman Schofield

A key concept of social choice is the idea of the Condorcet point or core. For example, consider a voting game with four participants so any three will win. If voters have Euclidean preferences, then the point at the center will be unbeaten. Earlier spatial models of social choice focused on deterministic voter choice. However, it is clear that voter choice is intrinsically stochastic. This chapter employs a stochastic model based on multinomial logit to examine whether parties in electoral competition tend to converge toward the electoral center or respond to activist pressure to adopt more polarized policies. The chapter discusses experimental results of the idea of the core explores empirical analyses of elections in Israel and the United States.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 3124-3130 ◽  
Author(s):  
HUI CONG LIU ◽  
XIU QING XU ◽  
WEI PING LI ◽  
YAN HONG GUO ◽  
LI-QUN ZHU

The shell material of microcapsules has an important effect on the electrolytic co-deposition behavior, the release of core material and the surface performance of composite coating. This paper discussed the tensile property and the stability of three shell materials including polyvinyl alcohol (PVA), gelatin and methyl cellulose (MC). It is found that these three shell materials have good mechanical strength and flexibility which are favorable to electrolytic co-deposition and stability of microcapsules in composite coating and that MC has well permeability and porosity which has a positive effect on the release of the core material in composite coating. Moreover, the study of the thermal properties and water vapor permeability of the three shell materials showed that their permeability improved with increase of temperature and humidity. In addition, the composite copper coating containing microcapsules with PVA, gelatin or MC as shell material was prepared respectively.


Biochemistry ◽  
1996 ◽  
Vol 35 (6) ◽  
pp. 2037-2046 ◽  
Author(s):  
Vassiliki Karantza ◽  
Ernesto Freire ◽  
Evangelos N. Moudrianakis

2007 ◽  
Vol 342-343 ◽  
pp. 505-508
Author(s):  
Sung Won Kim ◽  
Yun Sik Nam ◽  
Yeon Jin Min ◽  
Jong Ho Kim ◽  
Kwang Meyong Kim ◽  
...  

Stability and disintegration of natural polyelectrolyte complex microspheres for protein drugs delivery have been extensively investigated because of their great influence on the drug release patterns. In this study, we tested stability of microspheres with alginate (Alg) core layered by either chitosan (Chi) or glycol chitosan (GChi) by examining release profiles of fluorophorelabeled bovine serum albumin (BSA) and lysozyme (Lys) from the microspheres. While GChi shell was disintegrated quickly, Chi-shell microspheres showed good stability in PBS. Disintegration of the coated layer induced the core material instable. The results indicated that while the charges of the shell material provided additional diffusion barrier against the protein release, the key factor to hold the proteins inside the microspheres was the integrity of the outer coating layer.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-21
Author(s):  
Boris Aronov ◽  
Mark De Berg ◽  
Joachim Gudmundsson ◽  
Michael Horton

Let V be a set of n points in mathcal R d , called voters . A point p ∈ mathcal R d is a plurality point for V when the following holds: For every q ∈ mathcal R d , the number of voters closer to p than to q is at least the number of voters closer to q than to p . Thus, in a vote where each  v ∈ V votes for the nearest proposal (and voters for which the proposals are at equal distance abstain), proposal  p will not lose against any alternative proposal  q . For most voter sets, a plurality point does not exist. We therefore introduce the concept of β-plurality points , which are defined similarly to regular plurality points, except that the distance of each voter to p (but not to  q ) is scaled by a factor  β , for some constant 0< β ⩽ 1. We investigate the existence and computation of β -plurality points and obtain the following results. • Define β * d := {β : any finite multiset V in mathcal R d admits a β-plurality point. We prove that β * d = √3/2, and that 1/√ d ⩽ β * d ⩽ √ 3/2 for all d ⩾ 3. • Define β ( p, V ) := sup {β : p is a β -plurality point for V }. Given a voter set V in mathcal R 2 , we provide an algorithm that runs in O ( n log n ) time and computes a point p such that β ( p , V ) ⩾ β * b . Moreover, for d ⩾ 2, we can compute a point  p with β ( p , V ) ⩾ 1/√ d in O ( n ) time. • Define β ( V ) := sup { β : V admits a β -plurality point}. We present an algorithm that, given a voter set V in mathcal R d , computes an ((1-ɛ)ċ β ( V ))-plurality point in time O n 2 ɛ 3d-2 ċ log n ɛ d-1 ċ log 2 1ɛ).


2017 ◽  
Vol 23 (1) ◽  
pp. 15-27
Author(s):  
Chung-Won LEE ◽  
Yong-Seong KIM ◽  
Sung-Yong PARK ◽  
Dong-Gyun KIM ◽  
Gunn HEO

Centrifugal model testing has been widely used to study the stability of levees. However, there have been a limited number of physical studies on levees where the velocity of increasing water levels was considered. To investigate the behavior characteristics of reservoir levees with different velocities of increasing water levels, centrifugal model tests and seepage-deformation coupled analyses were conducted. Through this study, it was confirmed that increasing water levels at higher velocities induces dramatic increases in the displacement, plastic volumetric strain and risk of hydraulic fracturing occurring in the core of the levee. Hence, real-time monitoring of the displacement and the pore water pres­sure of a levee is important to ensure levee stability.


2016 ◽  
Vol 4 (35) ◽  
pp. 5831-5841 ◽  
Author(s):  
Min Liu ◽  
Lei Wu ◽  
Xi Zhu ◽  
Wei Shan ◽  
Lian Li ◽  
...  

The stability of the core–shell structure plays an important role in the nanoparticles ability to overcome both the mucus and epithelium absorption barrier.


2012 ◽  
Vol 41 (1) ◽  
pp. 43-71 ◽  
Author(s):  
Scott L. Feld ◽  
Joseph Godfrey ◽  
Bernard Grofman

Sign in / Sign up

Export Citation Format

Share Document