Assessment of Machine Learning Security: The Case of Healthcare Data

Author(s):  
Anood Manasrah ◽  
Aisha Alkayem ◽  
Malik Qasaimeh ◽  
Samer Nofal
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Theyazn H.H Aldhyani ◽  
Ali Saleh Alshebami ◽  
Mohammed Y. Alzahrani

Chronic diseases represent a serious threat to public health across the world. It is estimated at about 60% of all deaths worldwide and approximately 43% of the global burden of chronic diseases. Thus, the analysis of the healthcare data has helped health officials, patients, and healthcare communities to perform early detection for those diseases. Extracting the patterns from healthcare data has helped the healthcare communities to obtain complete medical data for the purpose of diagnosis. The objective of the present research work is presented to improve the surveillance detection system for chronic diseases, which is used for the protection of people’s lives. For this purpose, the proposed system has been developed to enhance the detection of chronic disease by using machine learning algorithms. The standard data related to chronic diseases have been collected from various worldwide resources. In healthcare data, special chronic diseases include ambiguous objects of the class. Therefore, the presence of ambiguous objects shows the availability of traits involving two or more classes, which reduces the accuracy of the machine learning algorithms. The novelty of the current research work lies in the assumption that demonstrates the noncrisp Rough K-means (RKM) clustering for figuring out the ambiguity in chronic disease dataset to improve the performance of the system. The RKM algorithm has clustered data into two sets, namely, the upper approximation and lower approximation. The objects belonging to the upper approximation are favourable objects, whereas the ones belonging to the lower approximation are excluded and identified as ambiguous. These ambiguous objects have been excluded to improve the machine learning algorithms. The machine learning algorithms, namely, naïve Bayes (NB), support vector machine (SVM), K-nearest neighbors (KNN), and random forest tree, are presented and compared. The chronic disease data are obtained from the machine learning repository and Kaggle to test and evaluate the proposed model. The experimental results demonstrate that the proposed system is successfully employed for the diagnosis of chronic diseases. The proposed model achieved the best results with naive Bayes with RKM for the classification of diabetic disease (80.55%), whereas SVM with RKM for the classification of kidney disease achieved 100% and SVM with RKM for the classification of cancer disease achieved 97.53 with respect to accuracy metric. The performance measures, such as accuracy, sensitivity, specificity, precision, and F-score, are employed to evaluate the performance of the proposed system. Furthermore, evaluation and comparison of the proposed system with the existing machine learning algorithms are presented. Finally, the proposed system has enhanced the performance of machine learning algorithms.


Computer ◽  
2020 ◽  
Vol 53 (6) ◽  
pp. 57-61 ◽  
Author(s):  
Gary McGraw ◽  
Richie Bonett ◽  
Victor Shepardson ◽  
Harold Figueroa

2021 ◽  
Vol 11 (1) ◽  
pp. 7-14
Author(s):  
Uzair Aslam Bhatti ◽  
Linwang Yuan ◽  
Zhaoyuan Yu ◽  
Saqib Ali Nawaz ◽  
Anum Mehmood ◽  
...  

Healthcare diseases are spreading all around the globe day to day. Hospital datasets are full from the data with much information. It's an urgent requirement to use that data perfectly and efficiently. We propose a novel algorithm for predictive model for eye diseases using KNN with machine learning algorithms and artificial intelligence (AI). The aims are to evaluate the connection between the accumulated preoperative risk variables and different eye diseases and to manufacture a model that can anticipate the results on an individual level, thus giving relevance to impactful factors and geographic and demographic features. Risk factors of the desired diseases were calculated and machine learning algorithm applied to provide the prediction of the diseases. Health monitoring is an economic discipline that focuses on the effective allocation of medical resources, mainly to maximize the benefits of society to health through the available resources. With the increasing demand for medical services and the limited allocation of medical resources, the application of health economics in clinical practice has been paid more and more attention, and it has gradually played an important role in clinical decision-making.


2021 ◽  
Vol 7 ◽  
pp. e751
Author(s):  
Nazish Azam ◽  
Tauqir Ahmad ◽  
Nazeef Ul Haq

Human feelings are fundamental to perceive the conduct and state of mind of an individual. A healthy emotional state is one significant highlight to improve personal satisfaction. On the other hand, bad emotional health can prompt social or psychological well-being issues. Recognizing or detecting feelings in online health care data gives important and helpful information regarding the emotional state of patients. To recognize or detection of patient’s emotion against a specific disease using text from online sources is a challenging task. In this paper, we propose a method for the automatic detection of patient’s emotions in healthcare data using supervised machine learning approaches. For this purpose, we created a new dataset named EmoHD, comprising of 4,202 text samples against eight disease classes and six emotion classes, gathered from different online resources. We used six different supervised machine learning models based on different feature engineering techniques. We also performed a detailed comparison of the chosen six machine learning algorithms using different feature vectors on our dataset. We achieved the highest 87% accuracy using MultiLayer Perceptron as compared to other state of the art models. Moreover, we use the emotional guidance scale to show that there is a link between negative emotion and psychological health issues. Our proposed work will be helpful to automatically detect a patient’s emotion during disease and to avoid extreme acts like suicide, mental disorders, or psychological health issues. The implementation details are made publicly available at the given link: https://bit.ly/2NQeGET.


Author(s):  
Sumesh Sasidharan ◽  
M. Yousuf Salmasi ◽  
Selene Pirola ◽  
Omar A. Jarral

Artificial intelligence (AI) broadly concerns analytical algorithms that iteratively learn from big datasets, allowing computers to find concealed insights. These encompass a range of operations comprising several terms, including machine learning(ML), cognitive learning, deep learning, and reinforcement learning-based methods that can be used to incorporate and comprehend complex biomedical and healthcare data in scenarios where traditional statistical approaches cannot be implemented. For cardiovascular imaging in particular, machine learning guarantees to be a transformative tool that can address many unmet needs for patient-specific management, accurate prediction of disease progression, and the tracking of identifiable biomarkers of disease processes. In this chapter, the authors discuss fundamentals of machine learning algorithms for image analysis in the cardiovascular system by evaluating the need for ML in this field and examining the potential obstacles and challenges of implementation in the context of three common imaging modalities used in cardiovascular medicine.


Sign in / Sign up

Export Citation Format

Share Document