cardiovascular imaging
Recently Published Documents


TOTAL DOCUMENTS

952
(FIVE YEARS 237)

H-INDEX

54
(FIVE YEARS 10)

Healthcare ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 154
Author(s):  
Bhakti Patel ◽  
Amgad N. Makaryus

The tremendous advances in digital information and communication technology have entered everything from our daily lives to the most intricate aspects of medical and surgical care. These advances are seen in electronic and mobile health and allow many new applications to further improve and make the diagnoses of patient diseases and conditions more precise. In the area of digital radiology with respect to diagnostics, the use of advanced imaging tools and techniques is now at the center of evaluation and treatment. Digital acquisition and analysis are central to diagnostic capabilities, especially in the field of cardiovascular imaging. Furthermore, the introduction of artificial intelligence (AI) into the world of digital cardiovascular imaging greatly broadens the capabilities of the field both with respect to advancement as well as with respect to complete and accurate diagnosis of cardiovascular conditions. The application of AI in recognition, diagnostics, protocol automation, and quality control for the analysis of cardiovascular imaging modalities such as echocardiography, nuclear cardiac imaging, cardiovascular computed tomography, cardiovascular magnetic resonance imaging, and other imaging, is a major advance that is improving rapidly and continuously. We document the innovations in the field of cardiovascular imaging that have been brought about by the acceptance and implementation of AI in relation to healthcare professionals and patients in the cardiovascular field.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Panjiang Ma ◽  
Qiang Li ◽  
Jianbin Li

During the last two decades, as computer technology has matured and business scenarios have diversified, the scale of application of computer systems in various industries has continued to expand, resulting in a huge increase in industry data. As for the medical industry, huge unstructured data has been accumulated, so exploring how to use medical image data more effectively to efficiently complete diagnosis has an important practical impact. For a long time, China has been striving to promote the process of medical informatization, and the combination of big data and artificial intelligence and other advanced technologies in the medical field has become a hot industry and a new development trend. This paper focuses on cardiovascular diseases and uses relevant deep learning methods to realize automatic analysis and diagnosis of medical images and verify the feasibility of AI-assisted medical treatment. We have tried to achieve a complete diagnosis of cardiovascular medical imaging and localize the vulnerable lesion area. (1) We tested the classical object based on a convolutional neural network and experiment, explored the region segmentation algorithm, and showed its application scenarios in the field of medical imaging. (2) According to the data and task characteristics, we built a network model containing classification nodes and regression nodes. After the multitask joint drill, the effect of diagnosis and detection was also enhanced. In this paper, a weighted loss function mechanism is used to improve the imbalance of data between classes in medical image analysis, and the effect of the model is enhanced. (3) In the actual medical process, many medical images have the label information of high-level categories but lack the label information of low-level lesions. The proposed system exposes the possibility of lesion localization under weakly supervised conditions by taking cardiovascular imaging data to resolve these issues. Experimental results have verified that the proposed deep learning-enabled model has the capacity to resolve the aforementioned issues with minimum possible changes in the underlined infrastructure.


2022 ◽  
Vol 8 ◽  
Author(s):  
Sergio Sanchez-Martinez ◽  
Oscar Camara ◽  
Gemma Piella ◽  
Maja Cikes ◽  
Miguel Ángel González-Ballester ◽  
...  

The use of machine learning (ML) approaches to target clinical problems is called to revolutionize clinical decision-making in cardiology. The success of these tools is dependent on the understanding of the intrinsic processes being used during the conventional pathway by which clinicians make decisions. In a parallelism with this pathway, ML can have an impact at four levels: for data acquisition, predominantly by extracting standardized, high-quality information with the smallest possible learning curve; for feature extraction, by discharging healthcare practitioners from performing tedious measurements on raw data; for interpretation, by digesting complex, heterogeneous data in order to augment the understanding of the patient status; and for decision support, by leveraging the previous steps to predict clinical outcomes, response to treatment or to recommend a specific intervention. This paper discusses the state-of-the-art, as well as the current clinical status and challenges associated with the two later tasks of interpretation and decision support, together with the challenges related to the learning process, the auditability/traceability, the system infrastructure and the integration within clinical processes in cardiovascular imaging.


Author(s):  
Manuel Barreiro-Pérez ◽  
Mónica María Delgado Ortega ◽  
Laura Galián-Gay ◽  
Carmen Jiménez López-Guarch ◽  
Amparo Martínez-Monzonis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document