Temporal Geo-Social Personalized Keyword Search Over Streaming Data

2021 ◽  
Vol 7 (4) ◽  
pp. 1-28
Author(s):  
Abdulaziz Almaslukh ◽  
Yunfan Kang ◽  
Amr Magdy

The unprecedented rise of social media platforms, combined with location-aware technologies, has led to continuously producing a significant amount of geo-social data that flows as a user-generated data stream. This data has been exploited in several important use cases in various application domains. This article supports geo-social personalized queries in streaming data environments. We define temporal geo-social queries that provide users with real-time personalized answers based on their social graph. The new queries allow incorporating keyword search to get personalized results that are relevant to certain topics. To efficiently support these queries, we propose an indexing framework that provides lightweight and effective real-time indexing to digest geo-social data in real time. The framework distinguishes highly dynamic data from relatively stable data and uses appropriate data structures and a storage tier for each. Based on this framework, we propose a novel geo-social index and adopt two baseline indexes to support the addressed queries. The query processor then employs different types of pruning to efficiently access the index content and provide a real-time query response. The extensive experimental evaluation based on real datasets has shown the superiority of our proposed techniques to index real-time data and provide low-latency queries compared to existing competitors.

The purpose of this work is to develop a UJSON web technology with C# application to analyze the student data in real-ime. Execute continuous requests on JSON streaming data based on advanced technologies for parallel streaming computing, suitable for solving analytic problems and calculation of metrics in real-time. The developed management information system in this research work designed to filtering event flow, building an event flow as a query result, grouping and aggregation of events, and creating window semantics. For testing the proposed work, several queries were selected that implement aggregation with different types of semantic windows (Steps, Slides). Testing was done locally and on education moodle clusters. It was used 4 types of configurations 2, 4, 8, and 16 computing nodes. Based on the obtained results, scalability is noticeable with an increase in the number of nodes. The updated functions of the proposed UJSON could improve the construction of parallel flow systems and data processing. The developed approach based on modern and advanced parallel flow technologies for output calculations considering the pros and cons of various approaches found in the current era.


Author(s):  
Rizwan Patan ◽  
Rajasekhara Babu M ◽  
Suresh Kallam

A Big Data Stream Computing (BDSC) Platform handles real-time data from various applications such as risk management, marketing management and business intelligence. Now a days Internet of Things (IoT) deployment is increasing massively in all the areas. These IoTs engender real-time data for analysis. Existing BDSC is inefficient to handle Real-data stream from IoTs because the data stream from IoTs is unstructured and has inconstant velocity. So, it is challenging to handle such real-time data stream. This work proposes a framework that handles real-time data stream through device control techniques to improve the performance. The frame work includes three layers. First layer deals with Big Data platforms that handles real data streams based on area of importance. Second layer is performance layer which deals with performance issues such as low response time, and energy efficiency. The third layer is meant for Applying developed method on existing BDSC platform. The experimental results have been shown a performance improvement 20%-30% for real time data stream from IoT application.


Author(s):  
Prasanna Lakshmi Kompalli

Data coming from different sources is referred to as data streams. Data stream mining is an online learning technique where each data point must be processed as the data arrives and discarded as the processing is completed. Progress of technologies has resulted in the monitoring these data streams in real time. Data streams has created many new challenges to the researchers in real time. The main features of this type of data are they are fast flowing, large amounts of data which are continuous and growing in nature, and characteristics of data might change in course of time which is termed as concept drift. This chapter addresses the problems in mining data streams with concept drift. Due to which, isolating the correct literature would be a grueling task for researchers and practitioners. This chapter tries to provide a solution as it would be an amalgamation of all techniques used for data stream mining with concept drift.


Author(s):  
Suresh P. ◽  
Keerthika P. ◽  
Sathiyamoorthi V. ◽  
Logeswaran K. ◽  
Manjula Devi R. ◽  
...  

Cloud computing and big data analytics are the key parts of smart city development that can create reliable, secure, healthier, more informed communities while producing tremendous data to the public and private sectors. Since the various sectors of smart cities generate enormous amounts of streaming data from sensors and other devices, storing and analyzing this huge real-time data typically entail significant computing capacity. Most smart city solutions use a combination of core technologies such as computing, storage, databases, data warehouses, and advanced technologies such as analytics on big data, real-time streaming data, artificial intelligence, machine learning, and the internet of things (IoT). This chapter presents a theoretical and experimental perspective on the smart city services such as smart healthcare, water management, education, transportation and traffic management, and smart grid that are offered using big data management and cloud-based analytics services.


2016 ◽  
Vol 7 (3) ◽  
pp. 38-55
Author(s):  
Srinivasa K.G. ◽  
Ganesh Hegde ◽  
Kushagra Mishra ◽  
Mohammad Nabeel Siddiqui ◽  
Abhishek Kumar ◽  
...  

With the advancement of portable devices and sensors, there has been a need to build a universal framework, which can serve as a nodal point to aggregate data from different kinds of devices and sensors. We propose a unified framework that will provide a robust set of guidelines for sensors with varied degree of complexities connected to common set of System-on-Chip (SoC). These will help to monitor, control and visualize real time data coming from different type of sensors connected to these SoCs. We have defined a set of APIs, which will help the sensors to register with the server. These APIs will be the standard to which the sensors will comply while streaming data when connected to the client platforms.


2020 ◽  
Vol 12 (23) ◽  
pp. 10175
Author(s):  
Fatima Abdullah ◽  
Limei Peng ◽  
Byungchul Tak

The volume of streaming sensor data from various environmental sensors continues to increase rapidly due to wider deployments of IoT devices at much greater scales than ever before. This, in turn, causes massive increase in the fog, cloud network traffic which leads to heavily delayed network operations. In streaming data analytics, the ability to obtain real time data insight is crucial for computational sustainability for many IoT enabled applications such as environmental monitors, pollution and climate surveillance, traffic control or even E-commerce applications. However, such network delays prevent us from achieving high quality real-time data analytics of environmental information. In order to address this challenge, we propose the Fog Sampling Node Selector (Fossel) technique that can significantly reduce the IoT network and processing delays by algorithmically selecting an optimal subset of fog nodes to perform the sensor data sampling. In addition, our technique performs a simple type of query executions within the fog nodes in order to further reduce the network delays by processing the data near the data producing devices. Our extensive evaluations show that Fossel technique outperforms the state-of-the-art in terms of latency reduction as well as in bandwidth consumption, network usage and energy consumption.


Sign in / Sign up

Export Citation Format

Share Document