scholarly journals A Statistical Language Model for Pre-Trained Sequence Labeling: A Case Study on Vietnamese

Author(s):  
Xianwen Liao ◽  
Yongzhong Huang ◽  
Peng Yang ◽  
Lei Chen

By defining the computable word segmentation unit and studying its probability characteristics, we establish an unsupervised statistical language model (SLM) for a new pre-trained sequence labeling framework in this article. The proposed SLM is an optimization model, and its objective is to maximize the total binding force of all candidate word segmentation units in sentences under the condition of no annotated datasets and vocabularies. To solve SLM, we design a recursive divide-and-conquer dynamic programming algorithm. By integrating SLM with the popular sequence labeling models, Vietnamese word segmentation, part-of-speech tagging and named entity recognition experiments are performed. The experimental results show that our SLM can effectively promote the performance of sequence labeling tasks. Just using less than 10% of training data and without using a dictionary, the performance of our sequence labeling framework is better than the state-of-the-art Vietnamese word segmentation toolkit VnCoreNLP on the cross-dataset test. SLM has no hyper-parameter to be tuned, and it is completely unsupervised and applicable to any other analytic language. Thus, it has good domain adaptability.

Author(s):  
Minlong Peng ◽  
Qi Zhang ◽  
Xiaoyu Xing ◽  
Tao Gui ◽  
Jinlan Fu ◽  
...  

Word representation is a key component in neural-network-based sequence labeling systems. However, representations of unseen or rare words trained on the end task are usually poor for appreciable performance. This is commonly referred to as the out-of-vocabulary (OOV) problem. In this work, we address the OOV problem in sequence labeling using only training data of the task. To this end, we propose a novel method to predict representations for OOV words from their surface-forms (e.g., character sequence) and contexts. The method is specifically designed to avoid the error propagation problem suffered by existing approaches in the same paradigm. To evaluate its effectiveness, we performed extensive empirical studies on four part-of-speech tagging (POS) tasks and four named entity recognition (NER) tasks. Experimental results show that the proposed method can achieve better or competitive performance on the OOV problem compared with existing state-of-the-art methods.


2020 ◽  
Author(s):  
Usman Naseem ◽  
Matloob Khushi ◽  
Vinay Reddy ◽  
Sakthivel Rajendran ◽  
Imran Razzak ◽  
...  

Abstract Background: In recent years, with the growing amount of biomedical documents, coupled with advancement in natural language processing algorithms, the research on biomedical named entity recognition (BioNER) has increased exponentially. However, BioNER research is challenging as NER in the biomedical domain are: (i) often restricted due to limited amount of training data, (ii) an entity can refer to multiple types and concepts depending on its context and, (iii) heavy reliance on acronyms that are sub-domain specific. Existing BioNER approaches often neglect these issues and directly adopt the state-of-the-art (SOTA) models trained in general corpora which often yields unsatisfactory results. Results: We propose biomedical ALBERT (A Lite Bidirectional Encoder Representations from Transformers for Biomedical Text Mining) - bioALBERT - an effective domain-specific pre-trained language model trained on huge biomedical corpus designed to capture biomedical context-dependent NER. We adopted self-supervised loss function used in ALBERT that targets on modelling inter-sentence coherence to better learn context-dependent representations and incorporated parameter reduction strategies to minimise memory usage and enhance the training time in BioNER. In our experiments, BioALBERT outperformed comparative SOTA BioNER models on eight biomedical NER benchmark datasets with four different entity types. The performance is increased for; (i) disease type corpora by 7.47% (NCBI-disease) and 10.63% (BC5CDR-disease); (ii) drug-chem type corpora by 4.61% (BC5CDR-Chem) and 3.89 (BC4CHEMD); (iii) gene-protein type corpora by 12.25% (BC2GM) and 6.42% (JNLPBA); and (iv) Species type corpora by 6.19% (LINNAEUS) and 23.71% (Species-800) is observed which leads to a state-of-the-art results. Conclusions: The performance of proposed model on four different biomedical entity types shows that our model is robust and generalizable in recognizing biomedical entities in text. We trained four different variants of BioALBERT models which are available for the research community to be used in future research.


2017 ◽  
Vol 5 ◽  
pp. 247-261 ◽  
Author(s):  
Gáabor Berend

In this paper we propose and carefully evaluate a sequence labeling framework which solely utilizes sparse indicator features derived from dense distributed word representations. The proposed model obtains (near) state-of-the art performance for both part-of-speech tagging and named entity recognition for a variety of languages. Our model relies only on a few thousand sparse coding-derived features, without applying any modification of the word representations employed for the different tasks. The proposed model has favorable generalization properties as it retains over 89.8% of its average POS tagging accuracy when trained at 1.2% of the total available training data, i.e. 150 sentences per language.


2020 ◽  
Vol 34 (05) ◽  
pp. 8401-8408 ◽  
Author(s):  
Shifeng Liu ◽  
Yifang Sun ◽  
Bing Li ◽  
Wei Wang ◽  
Xiang Zhao

To tackle Named Entity Recognition (NER) tasks, supervised methods need to obtain sufficient cleanly annotated data, which is labor and time consuming. On the contrary, distantly supervised methods acquire automatically annotated data using dictionaries to alleviate this requirement. Unfortunately, dictionaries hinder the effectiveness of distantly supervised methods for NER due to its limited coverage, especially in specific domains. In this paper, we aim at the limitations of the dictionary usage and mention boundary detection. We generalize the distant supervision by extending the dictionary with headword based non-exact matching. We apply a function to better weight the matched entity mentions. We propose a span-level model, which classifies all the possible spans then infers the selected spans with a proposed dynamic programming algorithm. Experiments on all three benchmark datasets demonstrate that our method outperforms previous state-of-the-art distantly supervised methods.


2015 ◽  
Vol 12 (2) ◽  
pp. 465-486
Author(s):  
Dejan Mancev ◽  
Branimir Todorovic

Structured learning algorithms usually require inference during the training procedure. Due to their exponential size of output space, the parameter update is performed only on a relatively small collection built from the ?best? structures. The k-best MIRA is an example of an online algorithm which seeks optimal parameters by making updates on k structures with the highest score at a time. Following the idea of using k-best structures during the learning process, in this paper we introduce four new k-best extensions of max-margin structured algorithms. We discuss their properties and connection, and evaluate all algorithms on two sequence labeling problems, the shallow parsing and named entity recognition. The experiments show how the proposed algorithms are affected by the changes of k in terms of the F-measure and computational time, and that the proposed algorithms can improve results in comparison to the single best case. Moreover, the restriction to the single best case produces a comparison of the existing algorithms.


Sign in / Sign up

Export Citation Format

Share Document