Hardware architectures for programming languages and programming languages for hardware architectures

1987 ◽  
Vol 15 (5) ◽  
pp. 2-8 ◽  
Author(s):  
Niklaus Wirth
Author(s):  
Kristina Mihajlenko ◽  
Mikhail Lukin ◽  
Andrey Stankevich

Introduction: Decompilers are useful tools for software analysis and support in the absence of source code. They are available for many hardware architectures and programming languages. However, none of the existing decompilers support modern AMD GPU architectures such as AMD GCN and RDNA. Purpose: We aim at developing the first assembly decompiler tool for a modern AMD GPU architecture that generates code in the OpenCL language, which is widely used for programming GPGPUs. Results: We developed the algorithms for the following operations: preprocessing assembly code, searching data accesses, extracting systemvalues, decompiling arithmetic operations and recovering data types. We also developed templates for decompilation of branching operations. Practical relevance: We implemented the presented algorithms in Python as a tool called OpenCLDecompiler, which supports a large subset of AMD GCN instructions. This tool automatically converts disassembled GPGPU code into the equivalent OpenCL code, which reduces the effort required to analyze assembly code.


1992 ◽  
Vol 139 (4) ◽  
pp. 335
Author(s):  
R.F. Hobson ◽  
J.D. Hoskin ◽  
J.L. Simmons ◽  
R.W. Spilsbury

Author(s):  
A. A. Nedbaylov

The calculations required in project activities for engineering students are commonly performed in electronic spreadsheets. Practice has shown that utilizing those calculations could prove to be quite difficult for students of other fields. One of the causes for such situation (as well as partly for problems observed during Java and C programming languages courses) lies in the lack of a streamlined distribution structure for both the source data and the end results. A solution could be found in utilizing a shared approach for information structuring in spreadsheet and software environment, called “the Book Method”, which takes into account the engineering psychology issues regarding the user friendliness of working with electronic information. This method can be applied at different levels in academic institutions and at teacher training courses.


Author(s):  
Petar Halachev ◽  
Aleksandra Todeva ◽  
Gergana Georgieva ◽  
Marina Jekova

he report explores and analyzes the application of the most popular programming languages from different organizations: GitHub; Stackoverflow; the TIOBE's Community index. The main client technologies: HTML; CSS; JavaScript; Typescript are presented and analysed. Features are characterized and the advantages and the disadvantages of the server technologies are described: Java; PHP; Python; Ruby. The application areas for web site development technologies have been defined. The creation of a quality web site is a complex and complicated process, but by observing some guidelines and recommendations in the work process can help to select the tools and the technologies in its design and development.


2014 ◽  
Vol 5 (2) ◽  
pp. 778-789
Author(s):  
Hassan Nouri Al-Obaidi ◽  
Ali A. Rashead Al-Azawy

Current research presents a visual-computational tool to design and investigate round electrostatic lenses in sense of analysis procedure. The finite elements methods is adopted to find the electrostatic potential in the lens region. Laplace’s equation is first replaced by a certain functional which physically represent the electric energy stored in the electric field. This functional is then minimized at each mesh point with respect to the nearest eight ones. This minimization process is proved to be entirely equivalent to solving Laplace’s equation. The requirement that the functional being minimized is then yields a set of nine point equations which inter relate the potentials at adjacent mesh points. Finally this set of equations is solved to find the electrostatic potential at each mesh point in the region of the lens under consideration. The procedure steps mention above are coded to program written in visual basic. Hence an interface tool for analyzing and designing electrostatic lenses has been built up. Designing results proved that the introduced tools has an excellent outputs in comparison with the others written in not visual programming languages. Furthermore it easier for researchers and designer to use such a tool over their counterpart ones.


1981 ◽  
Author(s):  
M. DUNN, JR. ◽  
J. BERTELSEN

Sign in / Sign up

Export Citation Format

Share Document