Correlating multilingual documents via bipartite graph modeling

Author(s):  
Hongyuan Zha ◽  
Xiang Ji
2021 ◽  
Vol 20 (3) ◽  
pp. 356-363
Author(s):  
V. Yegnanarayanan ◽  
◽  
M. Anisha ◽  
T. Arun Prasath ◽  
◽  
...  

This paper offers a bird’s eye perception of how bipartite graph modeling could help to comprehend the progression of Alzheimer Disease (AD). We will also discuss the role of the various software tools available in the literature to identify the bipartite structure in AD affected patient brain networks and a general procedure to generate a graph from the AD brain network. Further, as AD is a minacious disorder that leads to the progressive decline of memory and physical ability we resort to Computer-Aided Diagnosis. It has a vital part in the preliminary estimation and finding of AD. We propose an approach to become aware of AD particularly in its beginning phase by analyzing the measurable variations in the hippocampus, grey matter, cerebrospinal fluid and white matter of the brain from Magnetic resonance images. Hence an appropriate segmentation and categorization methods are projected to detect the presence of AD. The trials were carried out on Magnetic resonance images to distinguish from the section of interest. The effectiveness of the CAD system was experimentally evaluated from the images considered from publicly available databases. Obtained findings recommend that the established CAD system has boundless prospective and great guarantee for the prognosis of AD.


2013 ◽  
Vol 57 (11) ◽  
pp. 2331-2347 ◽  
Author(s):  
Fabien Tarissan ◽  
Bruno Quoitin ◽  
Pascal Mérindol ◽  
Benoit Donnet ◽  
Jean-Jacques Pansiot ◽  
...  

2018 ◽  
Vol 9 (12) ◽  
pp. 2147-2152
Author(s):  
V. Raju ◽  
M. Paruvatha vathana

10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 925
Author(s):  
Michal Staš

The crossing number cr ( G ) of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main goal of the paper is to state the crossing number of the join product K 2 , 3 + C n for the complete bipartite graph K 2 , 3 , where C n is the cycle on n vertices. In the proofs, the idea of a minimum number of crossings between two distinct configurations in the various forms of arithmetic means will be extended. Finally, adding one more edge to the graph K 2 , 3 , we also offer the crossing number of the join product of one other graph with the cycle C n .


2021 ◽  
Vol 12 (2) ◽  
pp. 1-22
Author(s):  
Jianguo Chen ◽  
Kenli Li ◽  
Keqin Li ◽  
Philip S. Yu ◽  
Zeng Zeng

Benefiting from convenient cycling and flexible parking locations, the Dockless Public Bicycle-sharing (DL-PBS) network becomes increasingly popular in many countries. However, redundant and low-utility stations waste public urban space and maintenance costs of DL-PBS vendors. In this article, we propose a Bicycle Station Dynamic Planning (BSDP) system to dynamically provide the optimal bicycle station layout for the DL-PBS network. The BSDP system contains four modules: bicycle drop-off location clustering, bicycle-station graph modeling, bicycle-station location prediction, and bicycle-station layout recommendation. In the bicycle drop-off location clustering module, candidate bicycle stations are clustered from each spatio-temporal subset of the large-scale cycling trajectory records. In the bicycle-station graph modeling module, a weighted digraph model is built based on the clustering results and inferior stations with low station revenue and utility are filtered. Then, graph models across time periods are combined to create a graph sequence model. In the bicycle-station location prediction module, the GGNN model is used to train the graph sequence data and dynamically predict bicycle stations in the next period. In the bicycle-station layout recommendation module, the predicted bicycle stations are fine-tuned according to the government urban management plan, which ensures that the recommended station layout is conducive to city management, vendor revenue, and user convenience. Experiments on actual DL-PBS networks verify the effectiveness, accuracy, and feasibility of the proposed BSDP system.


Author(s):  
Jürgen Jost ◽  
Raffaella Mulas ◽  
Florentin Münch

AbstractWe offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least $$\frac{n+1}{n-1}$$ n + 1 n - 1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size $$\frac{n-1}{2}$$ n - 1 2 . With the same method, we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree, provided this is at most $$\frac{n-1}{2}$$ n - 1 2 .


Sign in / Sign up

Export Citation Format

Share Document