The development of three-dimensional spatial modeling techniques for the construction planning of nuclear power plants

Author(s):  
Harold J. Borkin ◽  
Jonn F. McIntosh ◽  
James A. Turner
Author(s):  
Omid Malekzadeh ◽  
Matthew Monid ◽  
Michael Huang

Abstract Three-Dimensional (3D) CAD models are utilized by many designers; however, they are rarely utilized to their full potential. The current mainstream method of design process and communication is through design documentation. They are limited in depth of information, compartmentalized by discipline, fragmented into various segments, communicated through numerous layers, and finally, printed onto an undersized paper by the stakeholders and end-users. Large nuclear projects, such as refurbishments and decommissioning, suffer from spatial, interface, and interreference challenges, unintentional cost and schedule overruns, and quality concerns that can be rooted to the misalignments between designed and in-situ or previously as-built conditions that tend to stem from inaccessibility and lack of adequate data resolution during the transfer of technical information. This paper will identify the technologies and the methodology used during several piping system modifications of existing nuclear power plants, and shares the lessons learned with respect to the benefits and shortcomings of the approach. Overall, it is beneficial to leverage available multi-dimensional technologies to enhance various engineering and execution phases. The utilization and superposition of various spatial models into 3D and 4D formats, enabled the modification projects to significantly reduce in-person plant walkdown efforts, provide highly accurate as-found data, and enable stakeholders of all disciplines and trades to review the as-found, as-designed, and simulated as-installed modification; including the steps in between without requiring significant plant visits. This approach will therefore reduce the field-initiated changes that tend to result in design/field variations; resulting in less reliance on Appendix T of ASME BPVC Section III, reduction in the design registration reconciliations efforts, and it aligns with the overarching goal of EPRI guideline NCIG-05. Beyond the benefits to design and execution, the multidimensional approach will provide highly accurate inputs to some of the nuclear safety’s Beyond Design Basis Assessments (BDBA) and allowed for the incorporation of actual design values as input and hence removing the unnecessary over-conservatisms within some of the inputs.


2006 ◽  
Vol 321-323 ◽  
pp. 426-429
Author(s):  
Deok Hyun Lee ◽  
Myung Sik Choi ◽  
Do Haeng Hur ◽  
Jung Ho Han ◽  
Myung Ho Song ◽  
...  

Most of the corrosive degradations in steam generator tubes of nuclear power plants are closely related to the residual stress existing in the local region of a geometric change, that is, an expansion transition, u-bend, ding, dent, bulge, etc. Therefore, accurate information on a geometric anomaly in a tube is a prerequisite to the activity of a non destructive inspection for a precise and earlier detection of a defect in order to prevent a failure during an operation, and also for a root cause analysis of a failure. In this paper, a newly developed eddy current technique of a three-dimensional profilometry is introduced and the proof for the applicability of the technique to a plant inspection is provided. The quantitative profile measurement using a new eddy current probe was performed on steam generator expansion mock-up tubes with various geometric anomalies typically observed in the operating power plants, and the accuracy of the measured data was compared with those from the laser profilometry.


Author(s):  
Satoshi Fujita ◽  
Keisuke Minagawa ◽  
Takeshi Kodaira

In Japan, applications of seismic isolation systems to new generation nuclear power plants and fast breeder reactors have been expected in order to enhance seismic safety. However there are lots of restrictions for design of isolation systems, such as strong design seismic wave, deformation of piping between an isolated structure and a non-isolated structure, and so on. In addition combination of horizontal and vertical isolation has possibility to cause rocking motion if a three-dimensional isolation system is applied. Therefore isolation systems should be designed properly. Moreover the design of seismic isolation system has to consider influence on inner equipment and piping. This paper describes investigation regarding required properties and performance of seismic isolation system for nuclear power plants. The investigation is carried out by numerical analysis. In the analysis, various isolation devices such as friction pendulum bearings and so on are applied as well as natural rubber bearings.


2005 ◽  
Vol 2005 (0) ◽  
pp. _433-1_-_433-6_
Author(s):  
Kenji TAKAHASHI ◽  
Asao KATOH ◽  
Masaki MORISHITA ◽  
Minoru Fushimi ◽  
Takafumi FUJITA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document