Innate Immune Signaling in Nonalcoholic Fatty Liver Disease and Cardiovascular Diseases

Author(s):  
Jingjing Cai ◽  
Meng Xu ◽  
Xiaojing Zhang ◽  
Hongliang Li

The physiological significance of innate immune signaling lies primarily in its role in host defense against invading pathogens. It is becoming increasingly clear that innate immune signaling also modulates the development of metabolic diseases, especially nonalcoholic fatty liver disease and cardiovascular diseases, which are characterized by chronic, low-grade inflammation due to a disarrangement of innate immune signaling. Notably, recent studies indicate that in addition to regulating canonical innate immune-mediated inflammatory responses (or immune-dependent signaling-induced responses), molecules of the innate immune system regulate pathophysiological responses in multiple organs during metabolic disturbances (termed immune-independent signaling-induced responses), including the disruption of metabolic homeostasis, tissue repair, and cell survival. In addition, emerging evidence from the study of immunometabolism indicates that the systemic metabolic status may have profound effects on cellular immune function and phenotypes through the alteration of cell-intrinsic metabolism. We summarize how the innate immune system interacts with metabolic disturbances to trigger immune-dependent and immune-independent pathogenesis in the context of nonalcoholic fatty liver disease, as representative of metabolic diseases, and cardiovascular diseases.

2020 ◽  
Author(s):  
Olena H. Kurinna

AbstractNonalcoholic fatty liver disease (NAFLD) bears serious economic consequences for the health care system worldwide and Ukraine, in particular. Cardiovascular diseases (CVD) are the main cause of mortality in NAFLD patients. Changes in the gut microbiota composition can be regarded as a potential mechanism of CVD in NAFLD patients.The purpose of this work was to investigate changes in major gut microbiota phylotypes, Bacteroidetes, Firmicutes and Actinobacteria with quantification of Firmicutes/Bacteroidetes in NAFLD patients with concomitant CVD.The author enrolled 120 NAFLD subjects (25 with concomitant arterial hypertension (AH) and 24 with coronary artery disease (CAD)). The gut microbiota composition was assessed by qPCR.Resultsthe author found a marked tendency towards an increase in the concentration of Bacteroidetes (by 37.11% and 21.30%, respectively) with a decrease in Firmicutes (by 7.38% and 7.77%, respectively) in both groups with comorbid CAD and AH with the identified changes not reaching a statistical significance. The author quantified a statistically significant decrease in the concentration of Actinobacteria in patients with NAFLD with concomitant CAD at 41.37% (p<0.05) as compared with those with an isolated NAFLD. In patients with concomitant AH, the content of Actinobacteria dropped by 12.35%, which was statistically insignificant.Conclusionsthe author established changes in the intestinal microbiota, namely decrease in Actinobacteria in patients with CAD, which requires further research.


2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Sridhar Radhakrishnan ◽  
Jia-Yu Ke ◽  
Michael A Pellizzon

ABSTRACT Nonalcoholic fatty liver disease (NAFLD) is a complex spectrum of disorders ranging from simple benign steatosis to more aggressive forms of nonalcoholic steatohepatitis (NASH) and fibrosis. Although not every patient with NAFLD/NASH develops liver complications, if left untreated it may eventually lead to cirrhosis and hepatocellular carcinoma. Purified diets formulated with specific nutritional components can drive the entire spectrum of NAFLD in rodent models. Although they may not perfectly replicate the clinical and histological features of human NAFLD, they provide a model to gain further understanding of disease progression in humans. Owing to the growing demand of diets for NAFLD research, and for our further understanding of how manipulation of dietary components can alter disease development, we outlined several commonly used dietary approaches for rodent models, including mice, rats, and hamsters, time frames required for disease development and whether other metabolic diseases commonly associated with NAFLD in humans occur.


Author(s):  
Junli Ma ◽  
Qihang Zhou ◽  
Houkai Li

Gut microbiota play critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes, and insulin resistance, which highlighted the potential of gut microbiota-targeted therapies on these diseases. There are various ways that can manipulate gut microbiota including probiotics, prebiotics, synbiotics, antibiotics and some active components from herbal medicines. In this review, we first reviewed the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies on NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future.


Author(s):  
Junli Ma ◽  
Qihang Zhou ◽  
Houkai Li

Gut microbiota play critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes, and insulin resistance, which highlighted the potential of gut microbiota-targeted therapies on these diseases. There are various ways that can manipulate gut microbiota including probiotics, prebiotics, synbiotics, antibiotics and some active components from herbal medicines. In this review, we first described the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies in NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future.


Angiology ◽  
2019 ◽  
Vol 71 (1) ◽  
pp. 87-87 ◽  
Author(s):  
Çağri Yayla ◽  
Kadriye Gayretli Yayla ◽  
Mustafa Karanfil ◽  
Ahmet Göktuğ Ertem ◽  
Sefa Ünal ◽  
...  

2014 ◽  
Vol 66 (6) ◽  
pp. 574-579 ◽  
Author(s):  
Masihur Rehman Ajmal ◽  
Monika Yaccha ◽  
Mohammed Azharuddin Malik ◽  
M.U. Rabbani ◽  
Ibne Ahmad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document