scholarly journals Imaging Quantum Vortices in Superfluid Helium Droplets

2019 ◽  
Vol 70 (1) ◽  
pp. 173-198 ◽  
Author(s):  
Oliver Gessner ◽  
Andrey F. Vilesov

Free superfluid helium droplets constitute a versatile medium for a diverse range of experiments in physics and chemistry that extend from studies of the fundamental laws of superfluid motion to the synthesis of novel nanomaterials. In particular, the emergence of quantum vortices in rotating helium droplets is one of the most dramatic hallmarks of superfluidity and gives detailed access to the wave function describing the quantum liquid. This review provides an introduction to quantum vorticity in helium droplets, followed by a historical account of experiments on vortex visualization in bulk superfluid helium and a more detailed discussion of recent advances in the study of the rotational motion of isolated, nano- to micrometer-scale superfluid helium droplets. Ultrafast X-ray and extreme ultraviolet scattering techniques enabled by X-ray free-electron lasers and high-order harmonic generation in particular have facilitated the in situ detection of droplet shapes and the imaging of vortex structures inside individual, isolated droplets. New applications of helium droplets ranging from studies of quantum phase separations to mechanisms of low-temperature aggregation are discussed.

2018 ◽  
Vol 191 (3-4) ◽  
pp. 242-256 ◽  
Author(s):  
Charles Bernando ◽  
Andrey F. Vilesov

2021 ◽  
Vol 127 (4) ◽  
Author(s):  
S. Skruszewicz ◽  
S. Fuchs ◽  
J. J. Abel ◽  
J. Nathanael ◽  
J. Reinhard ◽  
...  

AbstractWe present an overview of recent results on optical coherence tomography with the use of extreme ultraviolet and soft X-ray radiation (XCT). XCT is a cross-sectional imaging method that has emerged as a derivative of optical coherence tomography (OCT). In contrast to OCT, which typically uses near-infrared light, XCT utilizes broad bandwidth extreme ultraviolet (XUV) and soft X-ray (SXR) radiation (Fuchs et al in Sci Rep 6:20658, 2016). As in OCT, XCT’s axial resolution only scales with the coherence length of the light source. Thus, an axial resolution down to the nanometer range can be achieved. This is an improvement of up to three orders of magnitude in comparison to OCT. XCT measures the reflected spectrum in a common-path interferometric setup to retrieve the axial structure of nanometer-sized samples. The technique has been demonstrated with broad bandwidth XUV/SXR radiation from synchrotron facilities and recently with compact laboratory-based laser-driven sources. Axial resolutions down to 2.2 nm have been achieved experimentally. XCT has potential applications in three-dimensional imaging of silicon-based semiconductors, lithography masks, and layered structures like XUV mirrors and solar cells.


2021 ◽  
Vol 7 (21) ◽  
pp. eabe2265
Author(s):  
Tobias Helk ◽  
Emma Berger ◽  
Sasawat Jamnuch ◽  
Lars Hoffmann ◽  
Adeline Kabacinski ◽  
...  

The lack of available table-top extreme ultraviolet (XUV) sources with high enough fluxes and coherence properties has limited the availability of nonlinear XUV and x-ray spectroscopies to free-electron lasers (FELs). Here, we demonstrate second harmonic generation (SHG) on a table-top XUV source by observing SHG near the Ti M2,3 edge with a high-harmonic seeded soft x-ray laser. Furthermore, this experiment represents the first SHG experiment in the XUV. First-principles electronic structure calculations suggest the surface specificity and separate the observed signal into its resonant and nonresonant contributions. The realization of XUV-SHG on a table-top source opens up more accessible opportunities for the study of element-specific dynamics in multicomponent systems where surface, interfacial, and bulk-phase asymmetries play a driving role.


2003 ◽  
Vol 345 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Peter J. Wheatley ◽  
Christopher W. Mauche ◽  
Janet A. Mattei
Keyword(s):  

2008 ◽  
Vol 16 (4) ◽  
Author(s):  
P. Wachulak ◽  
M. Capeluto ◽  
C. Menoni ◽  
J. Rocca ◽  
M. Marconi

AbstractThe recent development of table top extreme ultraviolet (EUV) lasers have enabled new applications that so far were restricted to the use of large facilities. These compact sources bring now to the laboratory environment the capabilities that will allow a broader application of techniques related to nanotechnology and nanofabrication. In this paper we review the advances in the utilization of EUV lasers in nanopatterning. In particular we show results of the nanopatterning using a table-top capillary discharge laser producing 0.12-mJ laser pulses with 1.2-ns time duration at a wavelength λ = 46.9 nm. The nanopatterning was realized by interferometric lithography using a Lloyd’s mirror interferometer. Two standard photoresists were used in this work, polymethyl methacrylate (PMMA) and hydrogen silsesquioxane (HSQ). Pillars with a full width half maximum (FWHM) diameter of 60 nm and holes with FWHM diameter of 130 nm were obtained over areas in excess of 500×500 μm2.


Sign in / Sign up

Export Citation Format

Share Document