Frictional Melting Processes in Planetary Materials: From Hypervelocity Impact to Earthquakes

2010 ◽  
Vol 38 (1) ◽  
pp. 221-254 ◽  
Author(s):  
John G. Spray
Author(s):  
John G. Spray ◽  
Marc B. Biren

ABSTRACT Field, microtextural, and geochemical evidence from impact-related melt rocks at the Manicouagan structure, Québec, Canada, allows the distinction to be made between friction-generated (pseudotachylite) and shock-generated melts. Making this distinction is aided by the observation that a significant portion of the impact structure’s central peak is composed of anorthosite that was not substantially involved in the production of impact melt. The anorthosite contrasts with the ultrabasic, basic, intermediate, and acidic gneisses that were consumed by decompression melting of the >60 GPa portion of the target volume to form the main impact melt body. The anorthosite was located below this melted volume at the time of shock loading and decompression, and it was subsequently brought to the surface from 7–10 km depth during the modification stage. Slip systems (faults) within the anorthosite that facilitated its elevation and collapse are occupied by pseudotachylites possessing anorthositic compositions. The Manicouagan pseudotachylites were not shock generated; however, precursor fracture-fault systems may have been initiated or reactivated by shock wave passage, with subsequent tectonic displacement and associated frictional melting occurring after shock loading and rarefaction. Pseudotachylites may inject off their generation planes to form complex intrusive systems that are connected to, but are spatially separated from, their source horizons. Comparisons are made between friction and shock melts from Manicouagan with those developed in the Vredefort and Sudbury impact structures, both of which show similar characteristics. Overall, pseudotachylite has compositions that are more locally derived. Impact melts have compositions reflective of a much larger source volume (and typically more varied source lithology inputs). For the Manicouagan, Vredefort, and Sudbury impact structures, multiple target lithologies were involved in generating their respective main impact melt bodies. Consequently, impact melt and pseudotachylite can be discriminated on compositional grounds, with assistance from field and textural observations. Pseudotachylite and shock-generated impact melt are not the same products, and it is important not to conflate them; each provides valuable insight into different stages of the hypervelocity impact process.


2020 ◽  
Vol 8 ◽  
Author(s):  
Leny Montheil ◽  
Virginia G. Toy ◽  
James M. Scott ◽  
Thomas M. Mitchell ◽  
David P. Dobson

In natural friction melts, or pseudotachylites, clast textures and glass compositions can influence the frictional behavior of faults hosting pseudotachylites, and are, in turn, sensitive to the processes involved in pseudotachylite formation. Quantification of these parameters in situations where the host rock composition and formation conditions are well-constrained, such as analogue experiments, may yield calibrations that can be employed in analysis of natural pseudotachylites. In this paper, we experimentally-generated pseudotachylites in granitoid rocks (tonalite and Westerly granite) at Pconf = 40 MPa and slip rates of ∼0.1 m s−1, comparable to the conditions under which natural pseudotachylite is known to form in Earth’s upper crust. We find variations in both clast textures and glass compositions that reflect formation processes, and probably influence the frictional behavior of similar natural faults hosting pseudotachylite. Quantification of particle size and shape distribution with a semi-automatic image analysis method, combined with analysis of glass and host-rock composition of these experimentally generated pseudotachylites, reveals that the textures of pseudotachylite material evolved by combinations of 1) comminution, 2) heterogeneous frictional flash melting, and 3) homogeneous (diffusive) clast melting and/or marginal decrepitation. Fractal dimensions of pseudotachylite-hosted clasts (D ∼ 3) that are greater than those of marginal fragmented host rock particles (gouge, D ∼ 2.4), reflect an increase of the intensity of comminution by slip localisation during a pre-melting phase. Chemical analyses demonstrate that these pseudotachylite glasses were generated by frictional flash melting, where host rock phases melt individually. Biotite is the least resistant to melting, feldspar intermediate, and quartz is the most resistant. The peudotachylite glass generated in these experiments has an alkaline composition, is depleted in SiO2 compared to the bulk host-rock, and shows heterogeneous compositions in a single sample related to proximity to host-rock minerals. The percentage contributions of host rock phases to the melt, calculated by a mixing model, shows that glass compositions are dominated by plagioclase and biotite. Within the melt, margins of clasts were dissolved uniformly by diffusion and/or affected by marginal decrepitation, resulting in convex and round shapes with convexities averaging ∼0.8 and circularities averaging ∼0.65.


2021 ◽  
Vol 154 ◽  
pp. 103875
Author(s):  
Zhi-liang Xue ◽  
Ai-min Xie ◽  
You-qi Zhu ◽  
Yun-hao Zhong ◽  
Ying-chun Wu ◽  
...  

2021 ◽  
Vol 151 ◽  
pp. 103833
Author(s):  
Benjamin Estacio ◽  
Gil Shohet ◽  
Sean A.Q. Young ◽  
Isaac Matthews ◽  
Nicolas Lee ◽  
...  

2006 ◽  
Vol 33 (19) ◽  
Author(s):  
Tetsuro Hirono ◽  
Minoru Ikehara ◽  
Kenshiro Otsuki ◽  
Toshiaki Mishima ◽  
Masumi Sakaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document