Distinguishing friction- from shock-generated melt products in hypervelocity impact structures

Author(s):  
John G. Spray ◽  
Marc B. Biren

ABSTRACT Field, microtextural, and geochemical evidence from impact-related melt rocks at the Manicouagan structure, Québec, Canada, allows the distinction to be made between friction-generated (pseudotachylite) and shock-generated melts. Making this distinction is aided by the observation that a significant portion of the impact structure’s central peak is composed of anorthosite that was not substantially involved in the production of impact melt. The anorthosite contrasts with the ultrabasic, basic, intermediate, and acidic gneisses that were consumed by decompression melting of the >60 GPa portion of the target volume to form the main impact melt body. The anorthosite was located below this melted volume at the time of shock loading and decompression, and it was subsequently brought to the surface from 7–10 km depth during the modification stage. Slip systems (faults) within the anorthosite that facilitated its elevation and collapse are occupied by pseudotachylites possessing anorthositic compositions. The Manicouagan pseudotachylites were not shock generated; however, precursor fracture-fault systems may have been initiated or reactivated by shock wave passage, with subsequent tectonic displacement and associated frictional melting occurring after shock loading and rarefaction. Pseudotachylites may inject off their generation planes to form complex intrusive systems that are connected to, but are spatially separated from, their source horizons. Comparisons are made between friction and shock melts from Manicouagan with those developed in the Vredefort and Sudbury impact structures, both of which show similar characteristics. Overall, pseudotachylite has compositions that are more locally derived. Impact melts have compositions reflective of a much larger source volume (and typically more varied source lithology inputs). For the Manicouagan, Vredefort, and Sudbury impact structures, multiple target lithologies were involved in generating their respective main impact melt bodies. Consequently, impact melt and pseudotachylite can be discriminated on compositional grounds, with assistance from field and textural observations. Pseudotachylite and shock-generated impact melt are not the same products, and it is important not to conflate them; each provides valuable insight into different stages of the hypervelocity impact process.

1980 ◽  
Vol 35 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Elke Göbel ◽  
Uwe Reimold ◽  
Hildegard Baddenhausen ◽  
Herbert Palme

Abstract Two impact melt samples from the Lappajärvi crater (Scandinavia) are highly enriched in siderophile elements, such as Ir, Re, and Os. This indicates the presence of a meteoritic component. The simultaneous enrichments of Ni, Co, Cr, and Se suggest a chondritic projectile. Because of the relatively large indigenous contributions to Ni, Co, and Cr, it is not possible to distinguish between a normal and a carbonaceous chondrite. The high concentrations of relatively volatile elements could point towards a volatile-rich projectile.The two melt samples have high Re/Ir ratios compared to chondritic ratios. Enrichment of Re relative to Ir is very unusual in terrestrial impact melts. Loss of Re, because of volatilisation under oxidizing conditions or by weathering is frequently observed.The high Re/Ir ratios and the high abundances of relatively volatile elements either indicate the presence of a volatile rich phase or they characterize a type of meteorite, which has not been sampled. Some lunar highland rocks have a pattern of meteoritic elements rather similar to that observed for the Lappajärvi meteorite.The Lappajärvi crater is, after Rocheehouart, the second European crater where a significant amount of meteoritic component has been found.A melt sample from the Lake St. Martin crater (Manitoba), did not show any enrichment in meteoritic elements.


1980 ◽  
Vol 35 (8) ◽  
pp. 781-795 ◽  
Author(s):  
John T. Wasson ◽  
John Willis ◽  
Chien M. Wai ◽  
Alfred Kracher

AbstractSeveral low-Ni iron meteorites previously assigned to group IAB are reclassified IIICD on the basis of lower Ge, Ga, W and Ir concentrations and higher As concentrations; the low-Ni extreme of IIICD is now 62 mg/g, that of IAB is 64 mg/g. The resulting fractionation patterns in the two groups are quite similar. It has long been established that, in contrast to the magmatic iron meteorite groups, IAB and IIICD did not form by fractional crystallization of a metallic magma. Other models have been proposed, but all have serious flaws. A new model is proposed involving the formation of each iron in small pools of impact melt on a parent body consisting of material similar to the chondritic inclusions found in some IAB and IIICD irons, but initially unequilibrated. These impact melts ranged in temperatures from ~ 1190 K to ~ 1350 K. The degree of equilibration between melt and unmelted solids ranged from minimal at the lowest temperature to moderate at the highest temperature. The lowest temperature melts were near the cotectic in the Fe-Ni-S system with Ni contents of ~ 12 atom %. Upon cooling, these precipitated metal having ~ 600 mg/g Ni by equilibrium crystallization. The Ni-rich melt resulted from the melting of Ni-rich sulfides and metal in the unequilibrated chondritic parent. Low-Ni irons formed in high temperature melts near the composition of the FeS-Fe eutectic or somewhat more metal rich. We suggest that the decreasing Ge, Ga and refractory abundances with increasing Ni concentration reflect the trapping of these elements in oxide phases in the unequilibrated chondritic material, and that very little entered the Ni-rich melt parental to the Oktibbeha County iron. The remaining elements tended to have element/Ni ratios in the melts that were more or less independent of temperature. The remarkable correlation between I-Xe age of the chondritic inclusions and Ni content of the host metal is explained by a detailed evolution of (mega)regolith in which these groups originated. The most Ni-rich melts could only be generated from an unequilibrated chondrite parent; as the continuing deposition of impact energy produced increasingly higher grades of metamorphism, the maximum Ni content of the impact melts (and their subsequently precipitated metal) gradually decreased.


Author(s):  
B. Li ◽  
Z.C. Ling ◽  
J. Zhang ◽  
J. Chen ◽  
C. Q. Liu ◽  
...  

Highland crater Lalande (4.45° S, 8.63° W; D = 23.4 km) is located on the PKT area of the lunar near side, southeast of Mare Insularum. It is a complex crater in Copernican era and has three distinguishing features: high silicic anomaly, highest Th abundance and special landforms on its floor. There are some low-relief bulges on the left of crater floor with regular circle or ellipse shapes. They are ~ 250 to 680 m wide and ~ 30 to 91 m high with maximum flank slopes > 20°. There are two possible scenarios for the formation of these low-relief bulges which are impact melt products or young silicic volcanic eruptions. According to the absolute model ages of ejecta, melt ponds and hummocky floor, the ratio of diameter and depth, similar bugle features within other Copernican-aged craters and lack of volcanic source vents, we hypothesized that these low-relief bulges were most consistent with an origin of impact melts during the crater formation instead of small and young volcanic activities occurring on the crater floor. Based on Kaguya TC ortho-mosaic and DTM data produced by TC imagery in stereo, geological units and some linear features on the floor and wall of Lalande have been mapped. Eight geological units are organized by crater floor units: hummocky floor, central peak and low-relief bulges; and crater wall units: terraced walls, channeled and veneered walls, interior walls, mass wasting areas, blocky areas, and melt ponds. These geological units and linear features at Lalande provided us a chance to understand some details of the cratering process and elevation differences on the floor. We evaluated several possibilities to understand the potential causes for the observed elevation differences on the Lalande's floor. We proposed that late-stage wall collapse and subsidence due to melt cooling could be the possible causes of observed elevation differences on the floor.


2015 ◽  
Vol 1 (1) ◽  
pp. e1400050 ◽  
Author(s):  
Cameron M. Mercer ◽  
Kelsey E. Young ◽  
John R. Weirich ◽  
Kip V. Hodges ◽  
Bradley L. Jolliff ◽  
...  

Quantitative constraints on the ages of melt-forming impact events on the Moon are based primarily on isotope geochronology of returned samples. However, interpreting the results of such studies can often be difficult because the provenance region of any sample returned from the lunar surface may have experienced multiple impact events over the course of billions of years of bombardment. We illustrate this problem with new laser microprobe 40Ar/39Ar data for two Apollo 17 impact melt breccias. Whereas one sample yields a straightforward result, indicating a single melt-forming event at ca. 3.83 Ga, data from the other sample document multiple impact melt–forming events between ca. 3.81 Ga and at least as young as ca. 3.27 Ga. Notably, published zircon U/Pb data indicate the existence of even older melt products in the same sample. The revelation of multiple impact events through 40Ar/39Ar geochronology is likely not to have been possible using standard incremental heating methods alone, demonstrating the complementarity of the laser microprobe technique. Evidence for 3.83 Ga to 3.81 Ga melt components in these samples reinforces emerging interpretations that Apollo 17 impact breccia samples include a significant component of ejecta from the Imbrium basin impact. Collectively, our results underscore the need to quantitatively resolve the ages of different melt generations from multiple samples to improve our current understanding of the lunar impact record, and to establish the absolute ages of important impact structures encountered during future exploration missions in the inner Solar System.


Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 285 ◽  
Author(s):  
Hartmann

This study examines the history of the paradigm concerning a lunar (or solar-systemwide)terminal cataclysm (also called “Late Heavy Bombardment” or LHB), a putative, brief spikein impacts at ~3.9 Ga ago, preceded by low impact rates. We examine origin of the ideas, why theywere accepted, and why the ideas are currently being seriously revised, if not abandoned. Thepaper is divided into the following sections:1. Overview of paradigm.2. Pre-Apollo views (1949-1969).3. Initial suggestions of cataclysm (ca. 1974).4. Ironies.5. Alternative suggestions, megaregolith evolution (1970s).6. Impact melt rocks “establish” cataclysm (1990).7. Imbrium redux (ca. 1998).8. Impact melt clasts (early 2000s).9. Dating of front-side lunar basins?10. Dynamical models “explain” the cataclysm (c. 2000s).11. Asteroids as a test case.12. Impact melts predating 4.0 Ga ago (ca. 2008-present.).13. Biological issues.14. Growing doubts (ca. 1994-2014).15. Evolving Dynamical Models (ca. 2001-present).16. Connections to lunar origin.17. Dismantling the paradigm (2015-2018).18. “Megaregolith Evolution Model” for explaining the data.19. Conclusions and new directions for future work.The author hopes that this open-access discussion may prove useful for classroom discussionsof how science moves forward through self-correction of hypotheses.


2008 ◽  
Vol 139 ◽  
pp. 11-22 ◽  
Author(s):  
Dipanjan Sen ◽  
Markus J. Buehler

Nanostructured composites inspired by structural biomaterials such as bone and nacre form intriguing design templates for biomimetic materials. Here we use large scale molecular dynamics to study the shock response of nanocomposites with similar nanoscopic structural features as bone, to determine whether bioinspired nanostructures provide an improved shock mitigating performance. The utilization of these nanostructures is motivated by the toughness of bone under tensile load, which is far greater than its constituent phases and greater than most synthetic materials. To facilitate the computational experiments, we develop a modified version of an Embedded Atom Method (EAM) alloy multi-body interatomic potential to model the mechanical and physical properties of dissimilar phases of the biomimetic bone nanostructure. We find that the geometric arrangement and the specific length scales of design elements at nanoscale does not have a significant effect on shock dissipation, in contrast to the case of tensile loading where the nanostructural length scales strongly influence the mechanical properties. We find that interfacial sliding between the composite’s constituents is a major source of plasticity under shock loading. Based on this finding, we conclude that controlling the interfacial strength can be used to design a material with larger shock absorption. These observations provide valuable insight towards improving the design of nanostructures in shock-absorbing applications, and suggest that by tuning the interfacial properties in the nanocomposite may provide a path to design materials with enhanced shock absorbing capability.


2021 ◽  
Vol 906 (1) ◽  
pp. 012087
Author(s):  
Tatyana Shumilova ◽  
Aleksey Morokhin ◽  
Alexandr Zubov ◽  
Renat Shaybekov

Abstract Recent find of the ultra-high pressure high-temperature (UHPHT) impact melt glasses among the impactites of the Kara astrobleme has a high interest in nicely preserved 70 Ma glass with potentially unusual structure and properties. By the moment, it is important to understand about the substance source for the UHPHT glasses. The Kara target is characterized with complicated rock material preferably presented with Paleozoic sedimentary units. At the same time, the target has in a sequence Devonian sills and dikes of gabbro-dolerites. The latter appear on the surface at the Kara dome being a material which probably have been affected by the most strong impact. Here we for the first time describe the results of preliminary analysis of petrological and geochemical features of the magmatic dikes of the central uplift with the aim to understand their probable genetic source for the UHPHT impact melt veins matter. The provided studies point to essential difference between the compared materials, that means the UHPHT impact melts do not correspond to the magmatic material of the Khengursky complex of gabbro-dolerites of the Pay-Khoy Ridge (Russia).


Author(s):  
D. Faulkner ◽  
G.W. Lorimer ◽  
H.J. Axon

It is now generally accepted that meteorites are fragments produced by the collision of parent bodies of asteroidal dimensions. Optical metallographic evidence suggests that there exists a group of iron meteorites which exhibit structures similar to those observed in explosively shock loaded iron. It seems likely that shock loading of meteorites could be produced by preterrestrial impact of their parent bodies as mentioned above.We have therefore looked at the defect structure of one of these meteorites (Trenton) and compared the results with those made on a) an unshocked ‘standard’ meteorite (Canyon Diablo)b) an artificially shocked ‘standard’ meteorite (Canyon Diablo) andc) an artificially shocked specimen of pure α-iron.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Sign in / Sign up

Export Citation Format

Share Document