Arachidonic Acid Metabolism in Airway Epithelial Cells

1992 ◽  
Vol 54 (1) ◽  
pp. 303-329 ◽  
Author(s):  
M J Holtzman
1990 ◽  
Vol 259 (4) ◽  
pp. L222-L229 ◽  
Author(s):  
C. A. Doupnik ◽  
G. D. Leikauf

Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with “3H”arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant “peaks” in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein.


2008 ◽  
Vol 295 (5) ◽  
pp. L925-L932 ◽  
Author(s):  
Prerna Rastogi ◽  
Dawn M. Young ◽  
Jane McHowat

Human small airway epithelial cells (HSAEC) form the boundary between the external environmental allergens and the internal lung milieu. Mast cells are present in human lung tissue interspersed within the pulmonary epithelium and can secrete a host of pre- and newly formed mediators from their granules, which may propagate small airway inflammation. In this study, tryptase stimulation of HSAEC increased membrane-associated, calcium-independent phospholipase A2γ (iPLA2γ) activity, resulting in increased arachidonic acid and PGE2 release. These responses were inhibited by pretreating HSAEC with the iPLA2-selective inhibitor bromoenol lactone. The tryptase-stimulated PGE2 production was inhibited by treating HSAEC with the cyclooxygenase (COX)-1-selective inhibitor SC-560 and the nonselective COX inhibitor aspirin but not by the COX-2-selective inhibitor CAY10404 , indicating that the early release of arachidonic acid is metabolized by constitutive COX-1 to form PGE2 in tryptase-stimulated HSAEC. Additionally, platelet-activating factor production and neutrophil adherence to tryptase-stimulated HSAEC was also increased. This complex response can set up a cascade of inflammatory mediator production in small airways. We speculate that selective inhibition of iPLA2γ-mediated phospholipid hydrolysis may prove beneficial in inflammatory airway diseases.


Sign in / Sign up

Export Citation Format

Share Document