Arachidonic acid metabolism and casein secretion in lactating rabbit mammary epithelial cells : Effects of inhibitors of prostaglandins and leukotrienes synthesis

1988 ◽  
Vol 35 (2) ◽  
pp. 259-276 ◽  
Author(s):  
F. Blachier ◽  
M.C. Lacroix ◽  
M. Ahmed Ali ◽  
C. Léger ◽  
M. Ollivier-Bousquet
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yixin Huang ◽  
Liuhong Shen ◽  
Jing Jiang ◽  
Qipin Xu ◽  
Zhengzhong Luo ◽  
...  

AbstractBovine mammary epithelial cells (bMECs) are the main cells of the dairy cow mammary gland. In addition to their role in milk production, they are effector cells of mammary immunity. However, there is little information about changes in metabolites of bMECs when stimulated by lipopolysaccharide (LPS). This study describes a metabolomics analysis of the LPS-stimulated bMECs to provide a basis for the identification of potential diagnostic screening biomarkers and possible treatments for bovine mammary gland inflammation. In the present study, bMECs were challenged with 500 ng/mL LPS and samples were taken at 0 h, 12 h and 24 h post stimulation. Metabolic changes were investigated using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF MS) with univariate and multivariate statistical analyses. Clustering and metabolic pathway changes were established by MetaboAnalyst. Sixty-three differential metabolites were identified, including glycerophosphocholine, glycerol-3-phosphate, L-carnitine, L-aspartate, glutathione, prostaglandin G2, α-linolenic acid and linoleic acid. They were mainly involved in eight pathways, including D-glutamine and D-glutamic acid metabolism; linoleic acid metabolism; α-linolenic metabolism; and phospholipid metabolism. The results suggest that bMECs are able to regulate pro-inflammatory, anti-inflammatory, antioxidation and energy-producing related metabolites through lipid, antioxidation and energy metabolism in response to inflammatory stimuli.


2010 ◽  
Vol 89 (6) ◽  
pp. 476-488 ◽  
Author(s):  
Raul Martinez-Orozco ◽  
Napoleon Navarro-Tito ◽  
Adriana Soto-Guzman ◽  
Luis Castro-Sanchez ◽  
Eduardo Perez Salazar

2017 ◽  
Vol 62 (No. 12) ◽  
pp. 539-548
Author(s):  
L. Jin ◽  
S. Yan ◽  
B. Shi ◽  
H. Shi ◽  
X. Guo ◽  
...  

The objective of this study was to explore how retinoic acid (RA) attenuates oxidative injury induced by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in bovine mammary epithelial cells (BMEC). Subconfluence BMEC were randomly divided into four groups with six replicates: the control group (incubated in serum-free medium without RA or H<sub>2</sub>O<sub>2 </sub>for 30 h), H<sub>2</sub>O<sub>2</sub> group (pre-incubated for 24 h without RA, then for another 6 h with 600 μM H<sub>2</sub>O<sub>2</sub>), RA group (incubated with 1 mg/ml RA for 30 h without H<sub>2</sub>O<sub>2</sub>), and RA + H<sub>2</sub>O<sub>2</sub> group (RA prevention group, pre-incubated with 1 mg/ml RA for 24 h and then for another 6 h with 600 mM H<sub>2</sub>O<sub>2</sub>). The results showed that the H<sub>2</sub>O<sub>2</sub> treatment significantly decreased several measured traits, including the cell viability, glutathione peroxidase (GPX) and thioredoxin reductase (TRXR) activities, selenoprotein P (SELP) content, catalase and superoxide dismutase activities, total antioxidant capacity, and GPX1, TRXR1, and SELP gene expression, as well as GPX1 and TRXR1 protein expression. H<sub>2</sub>O<sub>2</sub> treatment also increased the malondialdehyde and reactive oxygen species contents and induced a marked increase of several measured traits, including the arachidonic acid (ARA) concentration, cytosolic phospholipase A2 and 5-lipoxygenase gene expression and activity, and 15-hydroxy twenty-four arachidonic acid and hydroxy peroxide tetracosenic arachidonic acid contents. RA pre-treatment prevented corresponding increases in parameters related to ARA metabolism and increased the activity of TRXR. Moreover, RA pre-treatment attenuated the phosphorylation levels of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase and effectively decreased the ARA content. These results suggest that RA protected BMEC from oxidative stress by elevating TRXR activity, which inhibited the MAPK signaling pathway and led to a decreased concentration of ARA.


Sign in / Sign up

Export Citation Format

Share Document