The Compatibility of a Boron-Based Anion Receptor with the Carbon Anode in Lithium-Ion Batteries

2003 ◽  
Vol 6 (2) ◽  
pp. A43 ◽  
Author(s):  
Xuehui Sun ◽  
Hung Sui Lee ◽  
Xiao-Qing Yang ◽  
James McBreen
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Cheng Lin ◽  
Aihua Tang ◽  
Hao Mu ◽  
Wenwei Wang ◽  
Chun Wang

Electrode material aging leads to a decrease in capacity and/or a rise in resistance of the whole cell and thus can dramatically affect the performance of lithium-ion batteries. Furthermore, the aging phenomena are extremely complicated to describe due to the coupling of various factors. In this review, we give an interpretation of capacity/power fading of electrode-oriented aging mechanisms under cycling and various storage conditions for metallic oxide-based cathodes and carbon-based anodes. For the cathode of lithium-ion batteries, the mechanical stress and strain resulting from the lithium ions insertion and extraction predominantly lead to structural disordering. Another important aging mechanism is the metal dissolution from the cathode and the subsequent deposition on the anode. For the anode, the main aging mechanisms are the loss of recyclable lithium ions caused by the formation and increasing growth of a solid electrolyte interphase (SEI) and the mechanical fatigue caused by the diffusion-induced stress on the carbon anode particles. Additionally, electrode aging largely depends on the electrochemical behaviour under cycling and storage conditions and results from both structural/morphological changes and side reactions aggravated by decomposition products and protic impurities in the electrolyte.


2010 ◽  
Vol 114 (35) ◽  
pp. 15202-15206 ◽  
Author(s):  
Yan Qin ◽  
Zonghai Chen ◽  
H. S. Lee ◽  
X.-Q. Yang ◽  
K. Amine

2021 ◽  
Author(s):  
yitao lou ◽  
XianFa Rao ◽  
Jianjun Zhao ◽  
Jun Chen ◽  
Baobao Li ◽  
...  

In order to develop novel fast charge/discharge carbon anode materials, an organic hard carbon material (PTCDA-1100) is obtained by calcination of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) at high temperature of 1100 oC....


2003 ◽  
Vol 114 (2) ◽  
pp. 228-236 ◽  
Author(s):  
Y.P. Wu ◽  
E. Rahm ◽  
R. Holze

2018 ◽  
Vol 5 (6) ◽  
pp. 172370 ◽  
Author(s):  
Xuyan Liu ◽  
Xinjie Zhu ◽  
Deng Pan

Lithium-ion batteries are widely used in various industries, such as portable electronic devices, mobile phones, new energy car batteries, etc., and show great potential for more demanding applications like electric vehicles. Among advanced anode materials applied to lithium-ion batteries, silicon–carbon anodes have been explored extensively due to their high capacity, good operation potential, environmental friendliness and high abundance. Silicon–carbon anodes have demonstrated great potential as an anode material for lithium-ion batteries because they have perfectly improved the problems that existed in silicon anodes, such as the particle pulverization, shedding and failures of electrochemical performance during lithiation and delithiation. However, there are still some problems, such as low first discharge efficiency, poor conductivity and poor cycling performance, which need to be improved. This paper mainly presents some methods for solving the existing problems of silicon–carbon anode materials through different perspectives.


2019 ◽  
Vol 7 (14) ◽  
pp. 8460-8471 ◽  
Author(s):  
Joseph F. S. Fernando ◽  
Chao Zhang ◽  
Konstantin L. Firestein ◽  
Jawahar Y. Nerkar ◽  
Dmitri V. Golberg

The role of the carbonaceous component in the excellent (de)lithiation properties of a ZnO/carbon anode material, as revealed by in situ TEM.


2016 ◽  
Vol 222 ◽  
pp. 1491-1500 ◽  
Author(s):  
Zhangxing He ◽  
Yingqiao Jiang ◽  
Wei Meng ◽  
Jing Zhu ◽  
Yang Liu ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (79) ◽  
pp. 75777-75781 ◽  
Author(s):  
Yi-Hung Liu ◽  
Sahori Takeda ◽  
Ikue Kaneko ◽  
Hideya Yoshitake ◽  
Masahiro Yanagida ◽  
...  

Vinylene carbonate induced film formation in a LiFePO4/hard carbon cell is clarified based on liquid chromatography mass spectroscopy and direct analysis in real time mass spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document