Ionic Conductivity of Dual‐Phase Polymer Electrolytes Comprised of NBR/SBR Latex Films Swollen with Lithium Salt Solutions

1994 ◽  
Vol 141 (8) ◽  
pp. 1989-1993 ◽  
Author(s):  
Morihiko Matsumoto ◽  
Toshihiro Ichino ◽  
J. Steven Rutt ◽  
Shiro Nishi
2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Qolby Sabrina ◽  
Titik Lestariningsih ◽  
Christin Rina Ratri ◽  
Achmad Subhan

Solid polymer electrolyte (SPE) appropriate to solve packaging leakage and expansion volume in lithium-ion battery systems. Evaluation of electrochemical performance of SPE consisted of mixture lithium salt, solid plasticizer, and polymer precursor with different ratio. Impedance spectroscopy was used to investigate ionic conduction and dielectric response lithium bis(trifluoromethane)sulfony imide (LiTFSI) salt, and additive succinonitrile (SCN) plasticizer. The result showing enhanced high ionic conductivity. In half-cell configurations, wide electrochemical stability window of the SPE has been tested. Have stability window at room temperature, indicating great potential of SPE for application in lithium ion batteries. Additive SCN contribute to forming pores that make it easier for the li ion to move from the anode to the cathode and vice versa for better perform SPE. Pore of SPE has been charaterization with FE-SEM. Additive 5% w.t SCN shows the best ionic conductivity with 4.2 volt wide stability window and pretty much invisible pores.


2020 ◽  
Vol 4 (3) ◽  
pp. 44
Author(s):  
Xinyi Mei ◽  
Wendy Zhao ◽  
Qiang Ma ◽  
Zheng Yue ◽  
Hamza Dunya ◽  
...  

Three new crosslinked polystyrene nanoparticles covalently attached with low lattice energy lithium salt moieties were synthesized: poly(styrene lithium trifluoromethane sulphonyl imide) (PSTFSILi), poly(styrene lithium benzene sulphonyl imide) (PSPhSILi), and poly(styrene lithium sulfonyl-1,3-dithiane-1,1,3,3-tetraoxide) (PSDTTOLi). A series of solid polymer electrolytes (SPEs) were formulated by mixing these lithium salts with high molecular weight poly(ethylene oxide), poly(ethylene glycol dimethyl ether), and lithium bis(fluorosulfonyl)imide. The crosslinked nano-sized polymer salts improved film strength and decreased the glass transition temperature (Tg) of the polymer electrolyte membranes. An enhancement in both ionic conductivity and thermal stability was observed. For example, the SPE film containing PSTFSILi displayed ionic conductivity of 7.52 × 10−5 S cm−1 at room temperature and 3.0 × 10−3 S cm−1 at 70 °C, while the SPE film containing PSDTTOLi showed an even better performance of 1.54 × 10−4 S cm−1 at room temperature and 3.23 × 10−3 S cm−1 at 70 °C.


2014 ◽  
Vol 17 (3) ◽  
pp. 139-145 ◽  
Author(s):  
C. Vijil Vani ◽  
S. Thanikaikarasan ◽  
T. Mahalingam ◽  
P. J. Sebastian ◽  
L. E. Verea ◽  
...  

Solid polymer electrolytes of polyethylene oxide (PEO) embedded with LiCF3SO3 was prepared and subjected to X-ray irradiation of different dosages (1.5 to 6 Gy). Ionic conductivity and dielectric studies were made over a frequency range of 100 Hz to 490 KHz. A little increase in ionic conductivity was noted for the sample irradiated for 1.5 Gy and the equivalent circuit remained unaltered for irradiated samples. Remarkable increase in dielectric constant was found for the irradiated samples. It was found that irradiation improved the dissolution of lithium salt and increased the polymer/Lithium interaction and thus improved the polarizability of the electrolyte. The frequency of hopping and liberation of free lithium ions were found altered by irradiation and hence the given dosage was found to have an optimum value in concern with the ionic conductivity of the electrolyte.


Sign in / Sign up

Export Citation Format

Share Document