Analysis of Cationic Structure in Some Room Temperature Molten Fluorides and Dependence of Their Ionic Conductivity and Viscosity on HF-Concentration

2019 ◽  
Vol 33 (7) ◽  
pp. 627-639
Author(s):  
Akimasa Tasaka ◽  
Takaaki Nakai ◽  
Hidemi Inoue ◽  
Kenta Nakanishi ◽  
Tomohiro Isogai ◽  
...  
2011 ◽  
Vol 115 (31) ◽  
pp. 9593-9603 ◽  
Author(s):  
Tomohiro Isogai ◽  
Takaaki Nakai ◽  
Hidemi Inoue ◽  
Kenta Nakanishi ◽  
Shinji Kohara ◽  
...  

2021 ◽  
Author(s):  
Ruixue Zhang ◽  
Wanying Zhao ◽  
Zhenzhen Liu ◽  
Shanghai Wei ◽  
Yigang Yan ◽  
...  

In situ formed amorphous LiBH4·1/2NH3 on the surface of Al2O3 nanoparticles results in an enhanced ion conductivity of 1.1 × 10−3 S cm−1 at room temperature.


2021 ◽  
Vol 7 (23) ◽  
pp. eabf7883
Author(s):  
Hiroki Ubukata ◽  
Fumitaka Takeiri ◽  
Kazuki Shitara ◽  
Cédric Tassel ◽  
Takashi Saito ◽  
...  

The introduction of chemical disorder by substitutional chemistry into ionic conductors is the most commonly used strategy to stabilize high-symmetric phases while maintaining ionic conductivity at lower temperatures. In recent years, hydride materials have received much attention owing to their potential for new energy applications, but there remains room for development in ionic conductivity below 300°C. Here, we show that layered anion-ordered Ba2−δH3−2δX (X = Cl, Br, and I) exhibit a remarkable conductivity, reaching 1 mS cm−1 at 200°C, with low activation barriers allowing H− conduction even at room temperature. In contrast to structurally related BaH2 (i.e., Ba2H4), the layered anion order in Ba2−δH3−2δX, along with Schottky defects, likely suppresses a structural transition, rather than the traditional chemical disorder, while retaining a highly symmetric hexagonal lattice. This discovery could open a new direction in electrochemical use of hydrogen in synthetic processes and energy devices.


Author(s):  
Jung Yong Seo ◽  
Sunggeun Shim ◽  
Jin-Woong Lee ◽  
Byung Do Lee ◽  
Sangwon Park ◽  
...  

Na3PS4 is an archetypal room-temperature (RT), Na+-conducting, solid-state electrolyte. Various compositional modifications of this compound via iso/aliovalent substitution are known to provide a high ionic conductivity (ion) that is comparable...


Author(s):  
Fabrizio Murgia ◽  
Matteo Brighi ◽  
Laura Piveteau ◽  
Claudia E. Avalos ◽  
Valerio Gulino ◽  
...  

2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Qolby Sabrina ◽  
Titik Lestariningsih ◽  
Christin Rina Ratri ◽  
Achmad Subhan

Solid polymer electrolyte (SPE) appropriate to solve packaging leakage and expansion volume in lithium-ion battery systems. Evaluation of electrochemical performance of SPE consisted of mixture lithium salt, solid plasticizer, and polymer precursor with different ratio. Impedance spectroscopy was used to investigate ionic conduction and dielectric response lithium bis(trifluoromethane)sulfony imide (LiTFSI) salt, and additive succinonitrile (SCN) plasticizer. The result showing enhanced high ionic conductivity. In half-cell configurations, wide electrochemical stability window of the SPE has been tested. Have stability window at room temperature, indicating great potential of SPE for application in lithium ion batteries. Additive SCN contribute to forming pores that make it easier for the li ion to move from the anode to the cathode and vice versa for better perform SPE. Pore of SPE has been charaterization with FE-SEM. Additive 5% w.t SCN shows the best ionic conductivity with 4.2 volt wide stability window and pretty much invisible pores.


Sign in / Sign up

Export Citation Format

Share Document