Enhanced Electrochemical Stability and Moisture Reactivity of Al2S3 Doped Argyrodite Solid Electrolyte

Author(s):  
Sanghyuk Min ◽  
Chanhwi Park ◽  
Insang Yoon ◽  
Gideok Kim ◽  
Kwonsoo Seol ◽  
...  
Author(s):  
Yong-Seok Lee ◽  
Su-Yeon Jung ◽  
Kwang-Sun Ryu

Abstract Li2(OH)0.9F0.1Cl, Li2(OH)0.9Br0.1Cl, and Li2OHCl0.8Br0.2 solid electrolytes were synthesized and compared with Li2OHCl to analyze the exact improvement mechanism for Li+ conductivity and electrochemical stability of Li2OHX-type solid electrolyte. The substituted materials exhibit improved electrochemical stability and Li+ conductivity Li2OHCl. Among these materials, Li(OH)0.9F0.1Cl has improved Li+ conductivity due to a reduction of the OH– concentration and the conductivity of Li2OHCl0.8Br0.2 was also increased compared with Li2OHCl due to the large interstitial site. In the case of Li2(OH)0.9Br0.1Cl, it had the highest Li+ conductivity and good Li+ migration by both effects because of a larger interstitial site and low OH− concentration. Furthermore, the electrochemical stability of four materials was compared due to the different structural stabilities and strengths of binary chemical bonds such as Li–X, H–X, and O–X. Comparing the Li+ conductivity of Li2(OH)0.9F0.1Cl and Li2OHCl0.8Br0.2, the Li+ conductivity is influenced by the OH− concentration unlike the other mechanisms.


2013 ◽  
Vol 1496 ◽  
Author(s):  
Sylvain Boulineau ◽  
Jean-Marie Tarascon ◽  
Vincent Seznec ◽  
Virginie Viallet

ABSTRACTHighly ion-conductive Li6PS5Cl Li-argyrodites were prepared through a high energy ball milling. Electrical and electrochemical properties were investigated. Ball-milled compounds exhibit a high conductivity of 1.33×10−4 S/cm with an activation energy of 0.3-0.4 eV and an electrochemical stability up to 7V vs. lithium. These results are obtained after only 10 hours of milling and with no additional heat treatment.To validate the use of the Li6PS5Cl-based solid electrolyte, all-solid-state batteries using LiCoO2 and Li4Ti5O12 as active material have been realized. The optimization of the electrode composition led to a maximum of 46 and 27 mAh per gram of composite for LiCoO2 and Li4Ti5O12-based half-cells respectively. The assembled all-solid-state LiCoO2 / Li6PS5Cl / Li4Ti5O12 battery presents a sustainable reversible capacity of 27 mAh per gram of active material and a coulomb efficiency close to 99%.


Small ◽  
2021 ◽  
pp. 2104508
Author(s):  
Jinzhu Wang ◽  
Jipeng Hao ◽  
Chaomin Duan ◽  
Xinchao Wang ◽  
Kai Wang ◽  
...  

2017 ◽  
Vol 5 (13) ◽  
pp. 6310-6317 ◽  
Author(s):  
Ruo-chen Xu ◽  
Xin-hui Xia ◽  
Shu-han Li ◽  
Sheng-zhao Zhang ◽  
Xiu-li Wang ◽  
...  

A lithium superionic conductor of Li7P2.9Mn0.1S10.7I0.3 as solid electrolyte was successfully prepared via high-energy milling, possessing high ionic conductivity and excellent electrochemical stability. The prepared all solid state LSBs shows a large capacity of 796 mA h g−1 with good cycling stability.


2018 ◽  
Vol 4 (12) ◽  
pp. eaau9245 ◽  
Author(s):  
Xiulin Fan ◽  
Xiao Ji ◽  
Fudong Han ◽  
Jie Yue ◽  
Ji Chen ◽  
...  

Solid-state electrolytes (SSEs) are receiving great interest because their high mechanical strength and transference number could potentially suppress Li dendrites and their high electrochemical stability allows the use of high-voltage cathodes, which enhances the energy density and safety of batteries. However, the much lower critical current density and easier Li dendrite propagation in SSEs than in nonaqueous liquid electrolytes hindered their possible applications. Herein, we successfully suppressed Li dendrite growth in SSEs by in situ forming an LiF-rich solid electrolyte interphase (SEI) between the SSEs and the Li metal. The LiF-rich SEI successfully suppresses the penetration of Li dendrites into SSEs, while the low electronic conductivity and the intrinsic electrochemical stability of LiF block side reactions between the SSEs and Li. The LiF-rich SEI enhances the room temperature critical current density of Li3PS4to a record-high value of >2 mA cm−2. Moreover, the Li plating/stripping Coulombic efficiency was escalated from 88% of pristine Li3PS4to more than 98% for LiF-coated Li3PS4. In situ formation of electronic insulating LiF-rich SEI provides an effective way to prevent Li dendrites in the SSEs, constituting a substantial leap toward the practical applications of next-generation high-energy solid-state Li metal batteries.


2017 ◽  
Vol 301 ◽  
pp. 59-63 ◽  
Author(s):  
Yan Sun ◽  
Wenning Yan ◽  
Li An ◽  
Bingbin Wu ◽  
Kaifu Zhong ◽  
...  

2020 ◽  
Vol 13 (5) ◽  
pp. 1429-1461 ◽  
Author(s):  
Xiaona Li ◽  
Jianwen Liang ◽  
Xiaofei Yang ◽  
Keegan R. Adair ◽  
Changhong Wang ◽  
...  

This review focuses on fundamental understanding, various synthesis routes, chemical/electrochemical stability of halide-based lithium superionic conductors, and their potential applications in energy storage as well as related challenges.


Sign in / Sign up

Export Citation Format

Share Document