Electrochemical Stability and Performance of Li2OHCl Substituted by F or Br as Solid-State Electrolyte

Author(s):  
Yong-Seok Lee ◽  
Su-Yeon Jung ◽  
Kwang-Sun Ryu

Abstract Li2(OH)0.9F0.1Cl, Li2(OH)0.9Br0.1Cl, and Li2OHCl0.8Br0.2 solid electrolytes were synthesized and compared with Li2OHCl to analyze the exact improvement mechanism for Li+ conductivity and electrochemical stability of Li2OHX-type solid electrolyte. The substituted materials exhibit improved electrochemical stability and Li+ conductivity Li2OHCl. Among these materials, Li(OH)0.9F0.1Cl has improved Li+ conductivity due to a reduction of the OH– concentration and the conductivity of Li2OHCl0.8Br0.2 was also increased compared with Li2OHCl due to the large interstitial site. In the case of Li2(OH)0.9Br0.1Cl, it had the highest Li+ conductivity and good Li+ migration by both effects because of a larger interstitial site and low OH− concentration. Furthermore, the electrochemical stability of four materials was compared due to the different structural stabilities and strengths of binary chemical bonds such as Li–X, H–X, and O–X. Comparing the Li+ conductivity of Li2(OH)0.9F0.1Cl and Li2OHCl0.8Br0.2, the Li+ conductivity is influenced by the OH− concentration unlike the other mechanisms.

Author(s):  
Jiawei Wu ◽  
Jing Chen ◽  
Xiaodong Wang ◽  
An'an Zhou ◽  
Zhenglong Yang

For the higher safety and energy density, solid-state electrolyte with better mechanical strength, thermal and electrochemical stability is a perfect choice. To improve the performance of PEO, usage of low-cost...


2019 ◽  
Vol 21 (48) ◽  
pp. 26358-26367
Author(s):  
Hanghui Liu ◽  
Zhenhua Yang ◽  
Qun Wang ◽  
Xianyou Wang ◽  
Xingqiang Shi

A solid-state electrolyte (L7P3S10.25O0.75) with good ionic conductivity and electrochemical stability is successfully designed by oxygen doping.


2020 ◽  
Vol 8 (37) ◽  
pp. 19603-19611
Author(s):  
Adam R. Symington ◽  
John Purton ◽  
Joel Statham ◽  
Marco Molinari ◽  
M. Saiful Islam ◽  
...  

Solid electrolytes for all-solid-state batteries are generating considerable research interest as a means to improving their safety, stability and performance.


Author(s):  
Wei Liu ◽  
Ryan Milcarek ◽  
Kang Wang ◽  
Jeongmin Ahn

In this study, a multi-layer structure solid electrolyte (SE) for all-solid-state electrolyte lithium ion batteries (ASSLIBs) was fabricated and characterized. The SE was fabricated by laminating ceramic electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) with polymer (PEO)10-Li(N(CF3SO2)2 electrolyte and gel-polymer electrolyte of PVdF-HFP/ Li(N(CF3SO2)2. It is shown that the interfacial resistance is generated by poor contact at the interface of the solid electrolytes. The lamination protocol, material selection and fabrication method play a key role in the fabrication process of practical multi-layer SEs.


Author(s):  
P. M. Gonzalez Puente ◽  
Shangbin Song ◽  
Shiyu Cao ◽  
Leana Ziwen Rannalter ◽  
Ziwen Pan ◽  
...  

AbstractAll-solid-state lithium batteries (ASSLBs), which use solid electrolytes instead of liquid ones, have become a hot research topic due to their high energy and power density, ability to solve battery safety issues, and capabilities to fulfill the increasing demand for energy storage in electric vehicles and smart grid applications. Garnet-type solid electrolytes have attracted considerable interest as they meet all the properties of an ideal solid electrolyte for ASSLBs. The garnet-type Li7La3Zr2O12 (LLZO) has excellent environmental stability; experiments and computational analyses showed that this solid electrolyte has a high lithium (Li) ionic conductivity (10−4–10−3 S·cm−1), an electrochemical window as wide as 6 V, stability against Li metal anode, and compatibility with most of the cathode materials. In this review, we present the fundamentals of garnet-type solid electrolytes, preparation methods, air stability, some strategies for improving the conductivity based on experimental and computational results, interfacial issues, and finally applications and challenges for future developments of LLZO solid electrolytes for ASSLBs.


Nano Energy ◽  
2020 ◽  
Vol 71 ◽  
pp. 104600 ◽  
Author(s):  
Shun Tang ◽  
Qian Lan ◽  
Lin Xu ◽  
Jiyuan Liang ◽  
Ping Lou ◽  
...  

2015 ◽  
Vol 733 ◽  
pp. 253-256
Author(s):  
Wen Long Li ◽  
Bin Guo ◽  
Wei Jie Hu ◽  
Ming De Chen ◽  
Hong Zhang ◽  
...  

The development trend of all solid state lithium ion battery and the importance of lithium ion solid electrolyte in all solid state lithium ion batteries is introduced in this paper. The application of rare earth doping in solid electrolyte of lithium ion battery is summarized. We suggest that rare earth doping is favorable for the increase of the lithium ion battery electrolyte conductivity, thus it is beneficial to further improve the overall performance of all solid state lithium ion battery. The development prospect of rare earth doping in solid electrolyte of all solid state lithium ion battery is looked forward. In addition, we deem that the above mentioned technology is an important research aspect of solid state electrolyte.


1998 ◽  
Vol 548 ◽  
Author(s):  
H. Näfe ◽  
S. Gollhofer ◽  
F. Aldinger

ABSTRACTIt is shown that, on employing a practically relevant type of a potentiometric solid state CO2 sensor comprising Na-beta-alumina as solid electrolyte and Na2CO3 as gas sensitive electrode, the voltage response may be remarkably affected by electronic transference. This is in contradiction to what is commonly stated in the literature about the measuring properties of such a type of a sensor. On the other hand, the observation of a non-negligible amount of electronic conduction confirms previous findings on the behaviour of Na-beta-alumina under the conditions of a CO2sensor.


2013 ◽  
Vol 1496 ◽  
Author(s):  
Sylvain Boulineau ◽  
Jean-Marie Tarascon ◽  
Vincent Seznec ◽  
Virginie Viallet

ABSTRACTHighly ion-conductive Li6PS5Cl Li-argyrodites were prepared through a high energy ball milling. Electrical and electrochemical properties were investigated. Ball-milled compounds exhibit a high conductivity of 1.33×10−4 S/cm with an activation energy of 0.3-0.4 eV and an electrochemical stability up to 7V vs. lithium. These results are obtained after only 10 hours of milling and with no additional heat treatment.To validate the use of the Li6PS5Cl-based solid electrolyte, all-solid-state batteries using LiCoO2 and Li4Ti5O12 as active material have been realized. The optimization of the electrode composition led to a maximum of 46 and 27 mAh per gram of composite for LiCoO2 and Li4Ti5O12-based half-cells respectively. The assembled all-solid-state LiCoO2 / Li6PS5Cl / Li4Ti5O12 battery presents a sustainable reversible capacity of 27 mAh per gram of active material and a coulomb efficiency close to 99%.


Sign in / Sign up

Export Citation Format

Share Document