scholarly journals Damage Modeling of Solid Oxide Fuel Cells Accounting for Redox Effects

Author(s):  
Ba Nghiep Nguyen ◽  
Naveen Karri ◽  
Taylor Mason ◽  
James Fitzpatrick ◽  
Brian Koeppel

Abstract This work applies a multiscale mechanistic damage model developed for brittle ceramics and implemented in commercial finite element (FE) packages via user subroutines to study progressive damage in solid oxide fuel cells (SOFC) subjected to thermomechanical loading under normal operating and shutdown conditions including redox effects. The damage model captures the micromechanics of stiffness reduction due to material porosity change and microcracking and integrates the as-obtained stiffness reduction law into a continuum damage mechanics (CDM) formulation for the evolution of microcracks up to fracture. The volumetric “swelling” that occurs during redox is treated in constitutive modeling similarly to thermal expansion, but swelling strains are irreversible. This damage model was first validated through predictions of strength and stress-strain response for the SOFC ceramic electrode materials. Next, it has been applied to predict the potential for degradation in a generic planar SOFC stack with large active area cells. Multicell stack models were simulated in both co-flow and counter-flow configurations. In addition, a constant temperature redox cycle was also simulated to capture overall cell electrode damage due to volumetric swelling of the nickel (Ni)-based anode in the anode-supported cells.

Author(s):  
Hyeon-Cheol Park ◽  
Fatih Dogan

Anode supported solid oxide fuel cells (SOFC) were fabricated by addition of various metal oxides such as Fe2O3, Co3O4 and TiO2 to thin anode functional layers between the electrolyte (yttria-stabilized zirconia, YSZ) and electrode materials (anode support: YSZ-NiO). Effect of the additives on the power density and impedance spectra of SOFC was studied. It was found that addition of Co3O4 to anode functional layer was most effective towards improvement of power densities and reduction of the total ohmic resistance as well as the area specific resistance of the cells, while addition of TiO2 to anode functional layer resulted in lower power densities. Possible mechanisms on the relationship between the additives in electrode functional layers and the cell performance were briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document