Corrosion Resistance and Acidic ORR Activity of Pt-based Catalysts Supported on Nanocrystalline Alloys of Molybdenum and Tantalum Carbide

2019 ◽  
Vol 166 (16) ◽  
pp. F1292-F1300
Author(s):  
Eliran R. Hamo ◽  
Polina Tereshchuk ◽  
Melina Zysler ◽  
David Zitoun ◽  
Amir Natan ◽  
...  
2007 ◽  
Vol 48 (2) ◽  
pp. 167-170 ◽  
Author(s):  
Fengxiang Qin ◽  
Xinmin Wang ◽  
Guoqiang Xie ◽  
Shengli Zhu ◽  
Asahi Kawashima ◽  
...  

2015 ◽  
Vol 227 ◽  
pp. 11-14 ◽  
Author(s):  
Andrzej Królikowski

Structural and chemical attributes of amorphous and nanocrystalline metals, which affect their corrosion behaviour are outlined. Effects of the fraction of intercrystalline regions, diffusivity, chemical homogeneity / heterogeneity and local ordering are indicated. These features can lead to higher or lower corrosion resistance as compared to coarse-grained counterparts, depending on the nature of tested metal and corrosive environment. Contributions of these factors are represented by two examples of passive behavior of nanocrystalline metals and amorphous Ni-P alloys.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Pablo Guzmán ◽  
Willian Aperador ◽  
Luis Yate

Tantalum carbide (TaC), hafnium carbide (HfC), and Ta-Hf-C mixed coatings with and without a gold (Au) interlayer were deposited on 316LVM steel substrates by the magnetron cosputtering technique in order to improve the corrosion resistance of steel substrates in a simulated biological fluid. To study the effect of the gold interlayer on pitting corrosion, the different systems were placed in contact with Ringer’s solution at pH 7.4 and a temperature of 37°C. The electrochemical properties of the coatings were determined using polarization curves. Subsequently, the surface morphologies were observed using scanning electron microscopy (SEM) in order to analyze the corrosion processes on the different surfaces. The gold interlayer was found to significantly improve the electrochemical properties of the system, showing a decrease in the pitting corrosion and deterioration rate, while it is expected that the binary and ternary carbides provide mechanical stability to the bilayers protecting the gold.


Author(s):  
Anna C. Fraker

Small amounts of nickel are added to titanium to improve the crevice corrosion resistance but this results in an alloy which has sheet fabrication difficulties and is subject to the formation of large Ti2Ni precipitates. These large precipitates can serve as local corrosion sites; but in a smaller more widely dispersed form, they can have a beneficial effect on crevice corrosion resistance. The purpose of the present work is to show that the addition of a small amount of Mo to the Ti-1.5Ni alloy reduces the Ti2Ni precipitate size and produces a more elongated grained microstructure. It has recently been reported that small additions of Mo to Ti-0.8 to lw/o Ni alloys produce good crevice corrosion resistance and improved fabrication properties.


Author(s):  
J. Alias

Much research on magnesium (Mg) emphasises creating good corrosion resistance of magnesium, due to its high reactivity in most environments. In this study, powder metallurgy (PM) technique is used to produce Mg samples with a variation of aluminium (Al) composition. The effect of aluminium composition on the microstructure development, including the phase analysis was characterised by optical microscope (OM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). The mechanical property of Mg sample was performed through Vickers microhardness. The results showed that the addition of aluminium in the synthesised Mg sample formed distribution of Al-rich phases of Mg17Al12, with 50 wt.% of aluminium content in the Mg sample exhibited larger fraction and distribution of Al-rich phases as compared to the 20 wt.% and 10 wt.% of aluminium content. The microhardness values were also increased at 20 wt.% and 50 wt.% of aluminium content, comparable to the standard microhardness value of the annealed Mg. A similar trend in corrosion resistance of the Mg immersed in 3.5 wt.% NaCl solution was observed. The corrosion behaviour was evaluated based on potentiodynamic polarisation behaviour. The corrosion current density, icorr, is observed to decrease with the increase of Al composition in the Mg sample, corresponding to the increase in corrosion resistance due to the formation of aluminium oxide layer on the Al-rich surface that acted as the corrosion barrier. Overall, the inclusion of aluminium in this study demonstrates the promising development of high corrosion resistant Mg alloys.


Sign in / Sign up

Export Citation Format

Share Document