Role of Aluminium on the Microstructure and Corrosion Behaviour of Magnesium Prepared by Powder Metallurgy Method

Author(s):  
J. Alias

Much research on magnesium (Mg) emphasises creating good corrosion resistance of magnesium, due to its high reactivity in most environments. In this study, powder metallurgy (PM) technique is used to produce Mg samples with a variation of aluminium (Al) composition. The effect of aluminium composition on the microstructure development, including the phase analysis was characterised by optical microscope (OM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). The mechanical property of Mg sample was performed through Vickers microhardness. The results showed that the addition of aluminium in the synthesised Mg sample formed distribution of Al-rich phases of Mg17Al12, with 50 wt.% of aluminium content in the Mg sample exhibited larger fraction and distribution of Al-rich phases as compared to the 20 wt.% and 10 wt.% of aluminium content. The microhardness values were also increased at 20 wt.% and 50 wt.% of aluminium content, comparable to the standard microhardness value of the annealed Mg. A similar trend in corrosion resistance of the Mg immersed in 3.5 wt.% NaCl solution was observed. The corrosion behaviour was evaluated based on potentiodynamic polarisation behaviour. The corrosion current density, icorr, is observed to decrease with the increase of Al composition in the Mg sample, corresponding to the increase in corrosion resistance due to the formation of aluminium oxide layer on the Al-rich surface that acted as the corrosion barrier. Overall, the inclusion of aluminium in this study demonstrates the promising development of high corrosion resistant Mg alloys.

1970 ◽  
Vol 3 (2) ◽  
pp. 77-82 ◽  
Author(s):  
TS Sidhu ◽  
S Prakash ◽  
RD Agrawal

The present study aims to evaluate the hot corrosion behaviour of the Ni-based alloy Superni- 75 in the molten salt environment of Na2SO-60%V2O5 at 900°C under cyclic conditions. The thermogravimetric technique was used to establish the kinetics of corrosion. X-ray diffraction, scanning electron microscopy/energy-dispersive analysis and electron probe microanalysis techniques were used to analyse the corrosion products. Superni-75 has successfully provided the hot corrosion resistance to the given molten salt environment. The hot corrosion resistance of the Superni-75 has been attributed to the formation of uniform, homogeneous and adherent thick layer of the scale consisting mainly of oxides of nickel and chromium, and refractory Ni(VO3)2. These oxides and refractory nickel vanadates have blocked the penetration of oxygen and other corrosive species to the substrate. Keywords: Hot corrosion, nickel-based alloy, superalloy, molten salt environment   DOI: 10.3329/jname.v3i2.922 Journal of Naval Architecture and Marine Engineering 3(2006) 77-82


Author(s):  
Yavuz Kaplan ◽  
Mehmet Gülsün ◽  
Sinan Aksöz

Abstract In this study, powder metallurgy was applied in a furnace atmosphere to form titanium boride layers on a commercially pure Ti surface. Experiments were carried out using the solid-state boriding method at 900 °C and 1000°C for 12 h and 24 h. Samples were produced by pressing the commercially pure Ti powders under 870 MPa. The sintering process required by the powder metallurgy method was carried out simultaneously with the boriding process. Thus, the sintering and boriding were performed in one stage. The formation of the boride layer was investigated by field emission scanning electron microscopy, optical-light microscopy, X-ray diffraction, and elemental dispersion spectrometry analyses. In addition, microhardness measurements were performed to examine the effect of the boriding process on hardness. The Vickers microhardness of the boronized surface reached 1773 HV, which was much higher than the 150 HV hardness of the commercially pure Ti substrate. The X-ray diffraction analysis showed that the boriding process had enabled the formation of TiB and TiB2 on the powder metallurgy Ti substrate surface. Consequently, the production of Ti via powder metallurgy is a potentially cost-effective alternative to the conventional method, and the boriding process supplies TiB and TiB2 that provide super-high hardness and excellent wear and corrosion resistance.


DYNA ◽  
2018 ◽  
Vol 85 (207) ◽  
pp. 192-197 ◽  
Author(s):  
Estrella Natali Borja-Goyeneche ◽  
Jhon Jairo Olaya-Florez

This work researches the influence of the nickel content on the structural and anticorrosive properties of ZrSiTiN films deposited by means of reactive co-sputtering on alloys of Ti6Al4V. The morphology and structure were analyzed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the chemical composition was identified via X-ray scattering spectroscopy (EDS). The corrosion resistance was studied using potentiodynamic polarization (PP) tests employing a 3.5% by weight NaCl solution. In the films, an increase of Ni up to 6.97 at% was observed, while in XRD the FCC phase of (Zr, Ti) N was identified, with a mixed orientation in planes (111) and (200), which tended to diminish with the increase of Ni. Finally, with the addition of Ni, the corrosion current densities were reduced from 5.56 𝑥 10−8 to 2.64 𝑥 10−9 𝐴/𝑐m2. The improvement in the corrosion resistance is due to the effect of the Ni on the microstructure of the system (Zr, Ti) N, which can improve the quality of the passive film and prevent crystalline defects and corrosion zones.


2020 ◽  
Vol 67 (2) ◽  
pp. 150-157
Author(s):  
Kong Dejun ◽  
Li Jiahong

Purpose The purpose of this paper is to evaluate the salt spray corrosion (SSC) and electrochemical corrosion performances of CrNi, TiAlN/NiCr and CrNi–Al2O3–TiO2 coatings on H13 steel, which improved the corrosion resistance of H13 hot work mold. Design/methodology/approach CrNi, TiAlN/NiCr and CrNi–Al2O3–TiO2 coatings were fabricated on H13 hot work mold steel using a laser cladding and cathodic arc ion plating. The SSC and electrochemical performances of obtained coatings were investigated using a corrosion test chamber and electrochemical workstation, respectively. The corrosion morphologies, microstructure and phases were analyzed using an electron scanning microscope, optical microscope and X-ray diffraction, respectively, and the mechanisms of corrosion resistance were also discussed. Findings The CrNi coating is penetrated by corrosion media, producing the oxide of Fe3O4 on the coating surface; and the TiAlN coating is corroded to enter into the CrNi coating, forming the oxides of TiO and NiO, the mechanism is pitting corrosion, whereas the CrNi–Al2O3–TiO2 coating is not penetrated, with no oxides, showing the highest SSC resistance among the three kinds of coatings. The corrosion potential of CrNi coating, TiAlN/CrNi and CrNi–Al2O3–TiO2 coatings was –0.444, –0.481 and –0.334 V, respectively, and the corresponding polarization resistances were 3,074, 2,425 and 86,648 cm2, respectively. The electrochemical corrosion resistance of CrNi–Al2O3–TiO2 coating is the highest, which is enhanced by the additions of Al2O3 and TiO2. Originality/value The CrNi, TiAlN/CrNi and CrNi–Al2O3–TiO2 coatings on H13 hot work mold were firstly evaluated by the SSC and electrochemical performances.


2018 ◽  
Vol 934 ◽  
pp. 105-110 ◽  
Author(s):  
Ke Jian Li ◽  
Qiang Zheng ◽  
Yue Lin Qin ◽  
Xiao Wei Liu

Plastic deformation can induce surface modification, such as shot peening (SP) on workpiece surface is the hot issue of recent scientific research. SP is the efficient way to improve mechanical behavior of specimens by inducing sever plastic deformation on their surface. Nevertheless, this surface treatment induced complex microstructural evolutions such as grain refinement, will enhance the corrosion resistance of specimens. In this work, the microstructure and properties of 34CrMo4 alloy of before and after SP for 20 min have been investigated. The evolution of microstructure and properties were analyzed from the surface and cross-section. The microstructure morphology at the different depth was determined by optical microscope. The results show grain size is increasing with the depth, and the microhardness and compressive residual stress decrease gradually. In terms of corrosion resistance, the 50 μm depth specimen has the best property than other depth, which the potential and corrosion current density are-0.484 V and-5.72 Acm-2, respectively. The maximum polarization resistance is 2055 Ωcm2by capacitive arc radius of electrochemical impedance spectroscopy.


2018 ◽  
Vol 9 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Ramesh Bhat ◽  
Ampar Chitharanjan Hegde

Chloride bath containing ZnCl2 ∙7H2O, FeCl2 ∙H2O and a combination of sulphamic acid and citric acid (SA+CA) were optimized for electrodeposition of bright Zn-Fe alloy coating on the mild steel. Bath constituents and operating parameters were optimized by the Hull cell method for highest performance of the coating against corrosion. The effect of current density and temperature on deposit characteristics such as corrosion resistance, hardness, thickness, cathode current efficiency and glossiness, were studied. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) methods were used to assess corrosion behaviour. Surface morphology of coatings was examined using scanning electron microscopy (SEM). The Zn-Fe alloy with intense peaks corresponding to Zn (100) and Zn (101) phases, evidenced by X-ray diffraction (XRD) study, showed the highest corrosion resistance. A new and economical chloride bath for electrodeposition of bright Zn-Fe alloy coating on mild steel was proposed and discussed.


2010 ◽  
Vol 139-141 ◽  
pp. 670-676
Author(s):  
Hong Liang Xiang ◽  
Dong Liu ◽  
Wei Lin Huang ◽  
Fu Shan He

SAF2906 is a new kind of super duplex stainless steel, and more corrosion-resistant and strong than SAF2507, suitable to be used in the low temperature and corrosion conditions. In order to prevent the occurrence of microstructure changes resulting in the property deterioration, in the general, the castings made for SAF2906 should be cryogenically treated before they are used in the ultra low conditions. N is an alloying element, usually added to stainless steels to increase the material properties. So, In this paper, the effects of N content on microstructure, mechanical and corrosion resistance properties of SAF2906 casting super duplex stainless steel (SDSS) after cryogenic treatment were studied by means of Optical Microscope(OM), X-ray Diffraction(XRD) and electrochemical workstation. The results indicate that N can increase the amount of γ phase according to a linear relationship of Φ(γ)=99.4×w(N)+6.16. When N content is low or medial, γ phase can precipitate from ferrite. When N content is high, γ phase does not precipitate from ferrite and is converted directly from ferrite and austenite grain boundaries. The higher N content, the greater tensile strength and elongation, the better corrosion resistance. Compared with solution state, cryogenic treatment can improve corrosion resistance.


2014 ◽  
Vol 1004-1005 ◽  
pp. 113-118
Author(s):  
Hong Xia Liu ◽  
Jin Liang ◽  
Jue Zhang ◽  
Xiao Lian Zhang

Corrosion behaviour of AZ91DSm1.0 with different preparation methods(vacuum melting and common melting) is investigated. X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), corrosion weightless experiment and the potentiodynamic polarization curve are applied to characterize the corrosion behaviour. Results show that vacuum melting alloy possess higher corrosion resistance than common melting alloy. This is attributed to the rod-shaped Al3Sm which was formed in common melting alloy will have certain fragmentation effect on matrix that can lead to defects.


2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
C. N. Panagopoulos ◽  
A. G. Tsopani

The corrosion behaviour of Zn-10Al-1.5Cu alloy in NaCl solution was examined. The used NaCl solution concentrations were 1M, 0.3M, and 0.003M for a constant temperature values of 7°C or 25°C or 45°C. The corrosion behaviour of this alloy was investigated under potentiodynamic corrosion conditions. The surface of the corroded alloy specimens was studied with the aid of scanning electron microscopy and X-ray diffraction techniques. It was observed that the increase of NaCl concentration in the corrosion solution for a constant value of temperature led to lower corrosion resistance of the alloy. For a constant value of solution concentration, the increase of solution temperature also led to the decrease of corrosion resistance of the same alloy.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7389
Author(s):  
Michael Kahl ◽  
Teresa D. Golden

Modified zaccagnaite layered double hydroxide (LDH) type films were synthesized on steel substrates by pulsed electrochemical deposition from aqueous solutions. The resulting films were characterized by X-ray diffraction, scanning electron microscopy/X-ray dispersive spectroscopy, and Fourier transform infrared spectroscopy. Structural characterization indicated a pure layered double hydroxide phase; however, elemental analysis revealed that the surface of the films contained Zn:Al ratios outside the typical ranges of layered double hydroxides. Layer thickness for the deposited films ranged from approximately 0.4 to 3.0 μm. The corrosion resistance of the film was determined using potentiodynamic polarization experiments in 3.5 wt.% NaCl solution. The corrosion current density for the coatings was reduced by 82% and the corrosion potential was shifted 126 mV more positive when 5 layers of modified LDH coatings were deposited onto the steel substrates. A mechanism was proposed for the corroding reactions at the coating.


Sign in / Sign up

Export Citation Format

Share Document