Initiation of Localized Corrosion of Ferritic Stainless Steels by Using the Liquid-Phase Ion Gun Technique

2016 ◽  
Vol 164 (2) ◽  
pp. C1-C7 ◽  
Author(s):  
Jun-Seob Lee ◽  
Takashi Kawano ◽  
Tomohiro Ishii ◽  
Yuichi Kitagawa ◽  
Takayuki Nakanishi ◽  
...  
CORROSION ◽  
10.5006/3319 ◽  
2019 ◽  
Vol 75 (11) ◽  
pp. 1276-1280
Author(s):  
Y. Emun ◽  
H.S. Zurob ◽  
J.R. Kish

This study compares the localized (exterior) corrosion susceptibility of chromized steel to bench-mark ferritic stainless steels for automotive exhaust applications. Continuous near-neutral salt fog exposure (ASTM B117) was used for this purpose. Corrosion susceptibility was determined using mass loss measurements coupled with a post exposure metallographic examination. Complementary potentiodynamic polarization measurements were made in the bulk salt solution to help interpret the relative performance. The elevated Cr content provided by the chromizing surface treatment provides comparable corrosion resistance to the more highly alloyed ferritic stainless steels studied. The major factor affecting localized corrosion susceptibility is the formation of rust deposits, which act as effective pit-like corrosion initiation sites.


2019 ◽  
Vol 35 (3) ◽  
pp. 1138-1142
Author(s):  
Roland Tolulope Loto

Stainless steels are extensively applied in diverse industries due to their exceptional corrosion resistance. The corrosion resistance of alloy stainless steels (316L austenitic and 430Ti ferritic stainless steel) was studied in neutral chloride solutions with chloride concentrations of 1%, 2%, 3%, 4%, 5% and 6%. Their general and localized corrosion resistance were compared and discussed in addition to their passivation characteristics. Corrosion rate results obtained showed 430Ti exhibited slightly greater general resistance to chloride attack compared to 316L. Further investigation showed 316L steel exhibited higher resistance to localized corrosion attack to its resilient passive film. 430Ti exhibited cathodic and anodic passivation compared to 316L which only exhibited anodic passivation. Optical microscopic analysis showed the presence of small, superficial corrosion pits on 316L steel compared to 430Ti, which exhibited deep corrosion pits.


Alloy Digest ◽  
1999 ◽  
Vol 48 (5) ◽  

Abstract J and L Types 409 HP are ferritic stainless steels with 11% chromium. They exhibit an excellent combination of good formability, economy, and resistance to oxidation and corrosion. It is typically used in automotive exhaust systems. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-743. Producer or source: J & L Specialty Steel Inc.


Alloy Digest ◽  
2004 ◽  
Vol 53 (5) ◽  

Abstract Supermet 2205 is a manual metal arc (MMA) electrode with enhanced chromium, molybdenum, and nitrogen levels. It is used for welding standard 22% Cr duplex austenitic/ferritic stainless steels. This datasheet provides information on composition, microstructure, hardness, and tensile properties as well as fracture toughness. It also includes information on low temperature performance as well as joining. Filing Code: SS-903. Producer or source: Metrode Products Ltd.


Alloy Digest ◽  
2013 ◽  
Vol 62 (11) ◽  

Abstract MAGIVAL MG2 is a free machining ferritic stainless steel grade with the same high machinability and corrosion resistance as type 430F, but offering a higher magnetic permeability and lower coercive force than MG1 (Alloy Digest SS-1159, October 2013). Magival is a group of easily workable ferritic stainless steels developed for magnetic applications where high permeability and low coercive force are required. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1161. Producer or source: Valbruna Stainless Steel.


Sign in / Sign up

Export Citation Format

Share Document