salt fog
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 56)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Vol 5 (1) ◽  
pp. 72
Author(s):  
Sofia Tsouli ◽  
Angeliki G. Lekatou ◽  
Spyridon Kleftakis ◽  
Pantelis Gkoutzos ◽  
Ilias K. Tragazikis ◽  
...  

The objective of this effort is to study the effect that the combination of fly ash (FA) with a liquid corrosion inhibitor has on the mechanical degradation of 316L rebars embedded in concrete specimens during salt fog testing for a period of four months, as well as the porosity of concrete. Partial replacement of Ordinary Portland Cement (OPC) by FA (0–25%) did not significantly affect the tensile properties of 316L except a small decrease in the elastic modulus and % elongation with FA increasing. Both FA and FA-liquid inhibitor combination resulted in significant reductions in the porosity of the reinforced concrete after 4 m of salt fog testing.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4201
Author(s):  
Vincenzo Fiore ◽  
Luigi Calabrese

The aim of the present paper is to evaluate the effect of the hybridization with external layers of glass fibers on the durability of flax fiber reinforced composites in severe aging conditions. To this scope, full glass, full flax and hybrid glass–flax pinned laminates were exposed to a salt-fog environment for up to 60 days. Double-lap pinned joint tests were performed to assess the pin-hole joints performances at varying the laminate stacking sequence. In order to better discriminate the relationship between the mechanical behavior and the fracture mechanisms of joints at increasing the aging time, different geometries (i.e., by varying both the hole diameter D and the free edge distance from the center of the hole E) were investigated after 0 (i.e., unaged samples), 30 and 60 days of salt-fog exposition. It was shown that the hybridization positively affects the mechanical performance as well as the stability of pinned composites: i.e., improvements in both strength and durability against the salt-fog environment were evidenced. Indeed, the hybrid laminate exhibited a reduction in the bearing strength of about 20% after 60 days of aging, despite to full flax laminate, for which a total reduction in the bearing strength of 29% was observed. Finally, a simplified joint failure map was assessed, which clusters the main failure mechanisms observed for pinned composites at varying aging conditions, thus assisting the joining design of flax–glass hybrid laminates.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1718
Author(s):  
Aleksey Abrashov ◽  
Nelya Grigoryan ◽  
Yuri Korshak ◽  
Tigran Vagramyan ◽  
Oleg Grafov ◽  
...  

It has been shown that solutions of stearic acid in a dimethyl sulfoxide–water binary mixture allow superhydrophobic protective coatings to be created on an aluminum alloy surface with a minimum impact on the environment. The superhydrophobicity and self-cleaning ability of the coating that we developed have been confirmed by measurements of droplet wetting angles and roll-off angles. These properties appear due to the formation of a multimodal micro-rough surface that mainly consists of aluminum stearate. The coatings formed in this manner have been studied by ellipsometry, XPS, and scanning probe microscopy. Their protective ability has been estimated by the “droplet-express” method and in a salt fog chamber. The protective ability of the coating is determined by the DMSO/H2O ratio, the concentration of stearic acid, and the duration and temperature of modification of the aluminum alloy; it is controlled by a competition between the processes of aluminum stearate formation and hydrolysis. It has been shown that adsorption of stearic acid on an aluminum stearate coating increases its permeability and decreases its protective capability. The results presented in this article are useful for optimizing the conditions of applying green superhydrophobic stearate coatings on aluminum alloys in order to achieve a maximum protective effect.


2021 ◽  
Vol 13 (19) ◽  
pp. 10931
Author(s):  
Fabiana Pereira da Costa ◽  
Izabelle Marie Trindade Bezerra ◽  
Jucielle Veras Fernandes ◽  
Alisson Mendes Rodrigues ◽  
Romualdo Rodrigues Menezes ◽  
...  

Alkali-activated materials (AAMs) were produced using residues from the red ceramic industry as a precursor, and sodium hydroxide (NaOH), potassium hydroxide (KOH), and sodium silicate (Na2SiO3) as alkaline activators. The effect of activators and curing conditions on physical-mechanical properties and durability were evaluated. The processing parameters (amount of water and consistency index) and the activation conditions (the activator contents and curing temperature) were defined based on an experimental design getting the flexural rupture module as the response. The durability behavior was evaluated by natural aging, accelerated aging (simulated rain test), exposure to the marine environment (salt fog), and acidic environments (HCl and H2SO4). The results showed that the NaOH- and KOH-activated samples exhibited inferior mechanical behavior than those activated with Na2SiO3. In the durability studies, due to leaching, there was a decrease in mechanical strength when samples are subjected to aggressive exposure conditions. However, the strength values are still higher than the minimum indicated for traditional ceramic applications.


2021 ◽  
pp. 114874
Author(s):  
Yongming Yang ◽  
Jun Zhao ◽  
Shishun Zhang ◽  
Zhaohui Yang ◽  
Hugo Biscaia

Sign in / Sign up

Export Citation Format

Share Document