High Efficiency Hydrogen Membrane Fuel Cells with BaCe0.8Y0.2O3-δElectrolyte Thin Films and Pd1-xAgxSolid Anodes

2017 ◽  
Vol 164 (6) ◽  
pp. F577-F581 ◽  
Author(s):  
Yoshitaka Aoki ◽  
Tomoyuki Yamaguchi ◽  
Shohei Kobayashi ◽  
Chunyu Zhu ◽  
Hiroki Habazaki
Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Zhemin Du ◽  
Congmin Liu ◽  
Junxiang Zhai ◽  
Xiuying Guo ◽  
Yalin Xiong ◽  
...  

Nowadays, we face a series of global challenges, including the growing depletion of fossil energy, environmental pollution, and global warming. The replacement of coal, petroleum, and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2) energy is considered the ultimate energy in the 21st century because of its diverse sources, cleanliness, low carbon emission, flexibility, and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission, they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops, H2 fuel supply, especially H2 quality, attracts increasing attention. Compared with H2 for industrial use, the H2 purity requirements for fuel cells are not high. Still, the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore, we analyze the causes and developing trends for the changes in these standards in detail. On the other hand, according to characteristics of H2 for fuel cell vehicles, standard H2 purification technologies, such as pressure swing adsorption (PSA), membrane separation and metal hydride separation, were analyzed, and the latest research progress was reviewed.


Author(s):  
A. Descoeudres ◽  
J. Geissbiihler ◽  
J. Horzel ◽  
A. Lachowicz ◽  
J. Levrat ◽  
...  

2016 ◽  
Vol 319 ◽  
pp. 48-55 ◽  
Author(s):  
L. dos Santos-Gómez ◽  
J.M. Porras-Vázquez ◽  
F. Martín ◽  
J.R. Ramos-Barrado ◽  
E.R. Losilla ◽  
...  

ChemInform ◽  
2012 ◽  
Vol 43 (26) ◽  
pp. no-no
Author(s):  
Thomas Ryll ◽  
Jennifer L. M. Rupp ◽  
Anja Bieberle-Hutter ◽  
Henning Galinski ◽  
Ludwig J. Gauckler

2006 ◽  
Vol 89 (24) ◽  
pp. 243510 ◽  
Author(s):  
M. Lorenz ◽  
R. Johne ◽  
T. Nobis ◽  
H. Hochmuth ◽  
J. Lenzner ◽  
...  

Energy ◽  
2021 ◽  
pp. 122484
Author(s):  
Tiancheng Ouyang ◽  
Jie Lu ◽  
Peihang Xu ◽  
Xiaoyi Hu ◽  
Jingxian Chen

Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 650 ◽  
Author(s):  
Carmelo Lo Vecchio ◽  
David Sebastián ◽  
María Lázaro ◽  
Antonino Aricò ◽  
Vincenzo Baglio

Direct methanol fuel cells (DMFCs) are emerging technologies for the electrochemical conversion of the chemical energy of a fuel (methanol) directly into electrical energy, with a low environmental impact and high efficiency. Yet, before this technology can reach a large-scale diffusion, specific issues must be solved, in particular, the high cost of the cell components. In a direct methanol fuel cell system, high capital costs are mainly derived from the use of noble metal catalysts; therefore, the development of low-cost electro-catalysts, satisfying the target requirements of high performance and durability, represents an important challenge. The research is currently addressed to the development of metal–nitrogen–carbon (M–N–C) materials as cheap and sustainable catalysts for the oxygen reduction reaction (ORR) in an acid environment, for application in polymer electrolyte fuel cells fueled by hydrogen or alcohol. In particular, this mini-review summarizes the recent advancements achieved in DMFCs using M–N–C catalysts. The presented analysis is restricted to M–N–C catalysts mounted at the cathode of a DMFC or investigated in rotating disk electrode (RDE) configuration for the ORR in the presence of methanol in order to study alcohol tolerance. The main synthetic routes and characteristics of the catalysts are also presented.


1997 ◽  
Vol 471 ◽  
Author(s):  
J. Liu ◽  
D. C. Morton ◽  
M. R. Miller ◽  
Y. Li ◽  
E. W. Forsythe ◽  
...  

ABSTRACTZn2SiO4:Mn thin films were deposited and studied as thin film phosphors for flat panel cathodoluminescent displays. Crystallized films with improved electrical conductivity were obtained after conventional and rapid thermal annealings in a N2 environment at 850Xy11100 °C for 0.25 to 60 minutes. A maximum cathodoluminescent efficiency of 1.3 Lm/W was achieved under dc excitation at 1500 volts. The luminescent emission from these thin films was peaked around 525 nm. The decay time of these films was controlled in the range of 2 to 10 ms by varying the deposition and annealing parameters. The fast response time of these thin films overcomes the long decay limitation of the Zn2SiO4:Mn powder phosphor in practical display applications.


Sign in / Sign up

Export Citation Format

Share Document