Erratum: Role of Iron Impurity in Hydrometallurgical Recovery Process of Spent Lead-Acid Battery: Phase Transformation of Positive Material Made from Recovered Leady Oxide [J. Electrochem. Soc., 166, A1715 (2019)]

2019 ◽  
Vol 166 (10) ◽  
pp. X4-X4
Author(s):  
Wenhao Yu ◽  
Jiakuan Yang ◽  
Sha Liang ◽  
Peiyuan Zhang ◽  
Mingyang Li ◽  
...  
2006 ◽  
Vol 157 (1) ◽  
pp. 3-10 ◽  
Author(s):  
P.T. Moseley ◽  
R.F. Nelson ◽  
A.F. Hollenkamp

2020 ◽  
Vol 27 ◽  
pp. 101076 ◽  
Author(s):  
Zhongfei Wu ◽  
Yu Liu ◽  
Chengzhi Deng ◽  
Haimin Zhao ◽  
Ruirui Zhao ◽  
...  

2018 ◽  
Vol 37 (3) ◽  
pp. 199-209 ◽  
Author(s):  
Sarp Çelebi ◽  
Ülkü Yetiş ◽  
Kahraman Ünlü

The recovery of spent or waste lead acid batteries is important both for the management of lead input to the environment and to meet the lead demand of the market in a more energy and cost effective manner than primary production. As an important producer of lead acid batteries for the Middle Eastern and Eastern European market, Turkey seems to meet 22%–52% of its total lead demand by waste lead acid battery recovery. In this study, the wastes from Turkish waste lead acid battery recovery plants are identified and management strategies that are both technically sufficient and economically feasible for each of these wastes are complied. Furthermore, ranges of the amount of each waste generated per mass of final lead produced in these plants are estimated. Some of the most significantly generated wastes are lead containing dusts, wash water treatment sludges and slags from smelting furnaces with generation rates between 5–250, 1–150 and 5–100 kg t−1 of product lead, respectively. Many of these can be fed back to the recovery process inside the plants except a subset of slags that are called ‘final slag’ and have low (5%–6%) lead content. Final slags can either be recovered for the production of cement, road-filling materials or abrasives proven that they are in a non-leachable, stable state or should be stored at hazardous waste landfills. For improved environmental performance, newly emerging techniques that eliminate the generation of such slags are also discussed and suggested.


2015 ◽  
Vol 1 ◽  
pp. 15-21 ◽  
Author(s):  
Abhishek Jaiswal ◽  
Subhas C. Chalasani

2013 ◽  
Vol 12 (11) ◽  
pp. 2175-2182 ◽  
Author(s):  
Jiakuan Yang ◽  
Xinfeng Zhu ◽  
Lei Li ◽  
Jianwen Liu ◽  
Ramachandran Vasant Kumar

Sign in / Sign up

Export Citation Format

Share Document