hydrometallurgical process
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 61)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Dongseok Lee ◽  
Sung-Ho Joo ◽  
Dong Ju Shin ◽  
Shun Myung Shin

An environmentally friendly hydrometallurgical process was developed to recover vanadium and cesium selectively from spent sulfuric acid catalysts, and it has high recovery efficiency and economic advantages.


2021 ◽  
Vol 5 (1) ◽  
pp. 56
Author(s):  
Dimitrios Vlasopoulos ◽  
Paschalis Oustadakis ◽  
Styliani Agatzini-Leonardou ◽  
Petros Tsakiridis ◽  
Emmanouella Remoundaki

The current study presents an effort to develop a sustainable hydrometallurgical process for the recovery of copper from waste printed circuit boards (PCBs) to be applied at local small to medium industrial units. The process aims to separate and recover copper from filter dust produced during the crushing of PCBs using a hammer mill in a recycling facility. Due to the high plastic content in the dust (approximately 30% w/w), the metal fraction was separated gravimetrically, and the material originated consisted mainly of Cu (23.8%), Fe (17.8%), Sn (12.7%), Pb (6.3%), Zn (3.4%), Al (3.3%), Mn (1.6%), and Ni (1.5%). Prior to copper recovery, the dust was leached with HCl as a pretreatment step. During this step, more than 80% of iron, zinc, and tin were leached out. The resulting solid consisted mainly of Cu (37.6%) and Fe (10.7%), leading to a copper enrichment of around 60% in the powder. The leaching of copper was conducted in a two-step process using H2SO4 as a leaching agent with the addition of H2O2 as an oxidizing agent. The experimental conditions had low energy requirements (no heating or agitation needed). The leaching of Cu reached 98%. Despite the pretreatment step, the concentration of other metals (Fe, Zn, Ni) in the pregnant solution was too high to proceed to electrowining. Therefore, the organic solvent ACORGA M5640 was selected for the extraction of copper from the pregnant solution. The extraction was conducted in two stages at pH equilibrium 1.5, and the loaded organic phase was stripped with HCl in two steps. The strip liquor was suitable for electrowinning.


2021 ◽  
Vol 5 (1) ◽  
pp. 53
Author(s):  
Andriani Manataki ◽  
James M. Mwase ◽  
Casper van der Eijk

The Pedersen process is an alumina production process, which combines pyrometallurgical and hydrometallurgical methods. In the pyrometallurgical stage, limestone is calcined and CO2 is generated. This off-gas can be captured with a high CO2 concentration. At the end of the hydrometallurgical process, aluminum hydroxides, like bayerite, are precipitated using CO2. In this paper, experimental work on precipitation of aluminum hydroxides through the addition of a mixture of CO2, O2 and N2 is presented. The parameters varied, as were the percentages of each gas and the temperature. The indicators measured were the time until the beginning of precipitation and the time that the precipitation lasts. These tests simulate the use of a smelter furnace off-gas in the precipitation stage of the Pedersen process and have shown promising results.


2021 ◽  
Vol 882 (1) ◽  
pp. 012004
Author(s):  
D K Sutama ◽  
A Prasetya ◽  
H T B M Petrus ◽  
W Astuti

Abstract Cobalt and molybdenum are valuable metals whose presence in nature is very limited. The consumed catalyst, which is abundantly available in the petroleum refinery industry, is a potential source of those metals. A hydrometallurgical process using acid as a leaching agent is usually used to extract and separate the metals more effectively. This method is considered capable of yielding recovery of a higher percentage of metal. In this study, hydrochloric acid solutions at various concentrations of 1.0, 1.5 and 2 M were used. The consumed catalyst was obtained from Pertamina Refinery Unit IV, Cilacap, Indonesia. Leaching experiment was carried out for 300 minutes and sampling was undertaken at 1, 3, 5, 15, 30, 90 and 300 minutes. The particle size and agitation speed were fixed at 200 mesh and 400 rpm. Samples of consumed catalyst were analyzed using EDXRF before the leaching process. Samples of solution were analyzed using ICP-EOS. Experimental results have shown that the recovery of cobalt and molybdenum increases with the increase of either concentration of hydrochloric acid or temperature. The highest recoveries in cobalt and molybdenum were 34.66% and 5.03%, respectively, obtained at a concentration of hydrochloric acid of 2 M and temperature 60°C.


2021 ◽  
Vol 882 (1) ◽  
pp. 012069
Author(s):  
L Prasakti ◽  
A Prasetya ◽  
R M S D Suryohendrasworo ◽  
S N S H Puteri

Abstract In 2025, the demand of Li-ion batteries is estimated to reach 400,000 tons. A strategic effort is needed especially in the battery industry to realize sustainable use of Li-ion batteries. Spent batteries are being recycled using hydrometallurgical process to collect the lithium. This purifying process consists of leaching and precipitation which results in finding of lithium and sodium ions in the wastewater. To use water efficiently, wastewater is projected to be reused in the hydrometallurgical process. In order to do that, metal ions must be reduced from water to meet quality standards. In this experiment, granular activated carbon (GAC) and activated carbon block (CTO) were used as the adsorbent in a 30 minutes semi-continuous system. Samples were taken at 5, 10, 20, and 30 minutes at room temperature. Based on the result, granular activated carbon’s highest percentage of removal were 11.71% for lithium and 19.51% for sodium, and activated carbon block’s highest percentage of removal were 10.33% for lithium and 14.65% for sodium. It is observed from this experiment that the capacity of both adsorbents to remove lithium and sodium ions decreased after 20 minutes.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1123
Author(s):  
Ricardo Magdalena ◽  
Alicia Valero ◽  
Guiomar Calvo ◽  
Francisco J. Alguacil ◽  
Félix Antonio López Gómez

Demand for niobium and tantalum is increasing exponentially as these are essential ingredients for the manufacture of, among others, capacitors in technological devices and ferroniobium. Mine tailings rich in such elements could constitute an important source of Nb and Ta in the future and alleviate potential supply risks. This paper evaluates the possibility of recovering niobium and tantalum from the slags generated during the tin beneficiation process of mine tailings from the old Penouta mine, located in Spain. To do so, a simulation of the processes required to beneficiate and refine both elements is carried out. After carbothermic tin reduction, the slags are sent to a hydrometallurgical process where niobium oxide and tantalum oxide are obtained at the end. Reagents, water, and energy consumption, in addition to emissions, effluents, and product yields, are assessed. Certain factors were identified as critical, and recirculation was encouraged in the model to maximise production and minimise reagents’ use and wastes. With this simulation, considering 3000 production hours per year, the metal output from the tailings of the old mine could cover around 1% and 7.4% of the world annual Nb and Ta demand, respectively.


Author(s):  
Ricardo Magdalena ◽  
Alicia Valero ◽  
Guiomar Calvo ◽  
Francisco J. Alguacil ◽  
Félix Antonio López Gómez

Demand for niobium and tantalum is increasing exponentially as these are essential ingredients for the manufacture of, among others, capacitors in technological devices and ferroniobium. Mine tailings rich in such elements could constitute an important source of Nb and Ta in the future and so alleviate potential supply risks. This paper evaluates the possibility of recovering niobium and tantalum from the slags generated during the tin beneficiation process of mine tailings from the old Penouta mine, located in Spain. To do so, a simulation of the processes that would be required to beneficiate and refine both elements is carried out. After tin carbothermic reduction, the slags are sent to a hydrometallurgical process where at the end niobium oxide and tantalum oxide are obtained. Reagents, water and energy consumption, in addition to emissions, effluents and product yields are assessed. Certain factors were identified as critical, and recirculation was encouraged in the model to maximize production and minimize reagents use and wastes. With this simulation, considering 3000 production hours per year, the metal output from the tailings of the old mine could cover around 1% and 7.4% of the world annual Nb and Ta demand, respectively.


Author(s):  
Marja Rinne ◽  
Heini Elomaa ◽  
Mari Lundström

Abstract Purpose The soaring demand for cobalt for lithium-ion batteries has increased interest in the utilization of non-conventional cobalt sources. Such raw materials include complex ores containing minerals such as cobaltite and skutterudite, which, while rare, occur around the world, including in Finland, Canada, and the USA. The goal of this study was to evaluate the cradle-to-gate impacts of cobalt sulfate recovery from unutilized cobalt- and gold-bearing ores with the use of process simulation. Methods A literature analysis was conducted to establish the state-of-the-art processing methods for complex cobalt ores containing significant amounts of gold. The drafted process was simulated using HSC Sim software to obtain a mass and energy balance, which was compiled into a life cycle inventory (LCI). The environmental impact categories (global warming, acidification, eutrophication, ozone depletion, photochemical smog creation, water use) were calculated in GaBi software. Uncertainty regarding the possible future raw material composition was studied, and the simulation was used to investigate process performance and to evaluate the effect of variation in the process parameters on the environmental impact indicators. Results and discussion The results indicated that the main cobalt mineral type (cobaltite, linnaeite) had only minor effects on the evaluated impact categories. With cobaltite-dominated ores (High As case), the global warming potential (GWP) was estimated to be 20.9 kg CO2-eq, of which 12.7 kg CO2-eq was attributed to the hydrometallurgical process. With linnaeite-dominated ores, the equivalent values were 20.4 kg CO2-eq and 11.0 kg CO2-eq. The production of a high grade concentrate was observed to greatly decrease the impacts of the hydrometallurgical process, but the cobalt losses in the beneficiation stage and the mineral processing impacts would likely increase. The simulation showed that there is still potential to improve the cobalt recovery (to approximately 96%), which would also affect the indicator values. Conclusions The impacts were estimated prior to intensive metallurgical testing to determine the possible high impact areas in the process. Based on this, it is suggested that, during hydrometallurgical processing, improved treatment of cobalt-containing wash waters and the optimization of oxygen utilization efficiency in pressure leaching are the most significant ways to decrease the environmental impacts. Optimal solutions for the concentrate could be found when experimental data on the minerals processing steps becomes available.


Sign in / Sign up

Export Citation Format

Share Document