Ab Initio Monte Carlo Simulations of the Acidic Dissolution of Stainless Steels: Further Insights into the Mechanisms

2018 ◽  
Vol 165 (10) ◽  
pp. C703-C709 ◽  
Author(s):  
B. Malki ◽  
I. Guillotte ◽  
B. Baroux
2017 ◽  
Vol 19 (12) ◽  
pp. 8307-8321 ◽  
Author(s):  
Dennis Kuchenbecker ◽  
Felix Uhl ◽  
Harald Forbert ◽  
Georg Jansen ◽  
Dominik Marx

An ab initio-derived interaction potential is derived and used in path integral Monte Carlo simulations to investigate stationary-point structures of CH5+ microsolvated by up to four helium atoms.


2010 ◽  
Vol 1260 ◽  
Author(s):  
Sanjeev K. Nayak ◽  
Heike C. Herper ◽  
Peter Entel

AbstractTransition metals doped ZnO are possible candidates for multiferroics. Here, we have investigated the evolution of ferromagnetism due to Co dopants. The magnetic properties have been studied for Co concentrations from 0 to 100% by using ab-initio methods, i.e., KKR Green's function techniques. In order to estimate the Curie temperature we have performed Monte Carlo simulations with ab-initio calculated exchange parameters.From our calculations the onset of ferromagnetism occurs between 5 to 20% of Co depending on the numerical details of KKR method used. For Co concentrations larger than 50% the system is dominated by antiferromagnetic coupling and no Curie temperature can be obtained.


2021 ◽  
Vol 23 (1) ◽  
pp. 311-319
Author(s):  
Zhi Li ◽  
Christophe Winisdoerffer ◽  
François Soubiran ◽  
Razvan Caracas

We extend the application of the ab initio Gibbs ensemble method to the metallic system by including the contribution of excited electronic states.


2006 ◽  
Vol 115 (2-3) ◽  
pp. 177-189 ◽  
Author(s):  
María Luisa San-Román ◽  
Mauricio Carrillo-Tripp ◽  
Humberto Saint-Martin ◽  
Jorge Hernández-Cobos ◽  
Iván Ortega-Blake

Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 68 ◽  
Author(s):  
Antonio Fernández-Caballero ◽  
Mark Fedorov ◽  
Jan Wróbel ◽  
Paul Mummery ◽  
Duc Nguyen-Manh

Configuration entropy is believed to stabilize disordered solid solution phases in multicomponent systems at elevated temperatures over intermetallic compounds by lowering the Gibbs free energy. Traditionally, the increment of configuration entropy with temperature was computed by time-consuming thermodynamic integration methods. In this work, a new formalism based on a hybrid combination of the Cluster Expansion (CE) Hamiltonian and Monte Carlo simulations is developed to predict the configuration entropy as a function of temperature from multi-body cluster probability in a multi-component system with arbitrary average composition. The multi-body probabilities are worked out by explicit inversion and direct product of a matrix formulation within orthonomal sets of point functions in the clusters obtained from symmetry independent correlation functions. The matrix quantities are determined from semi canonical Monte Carlo simulations with Effective Cluster Interactions (ECIs) derived from Density Functional Theory (DFT) calculations. The formalism is applied to analyze the 4-body cluster probabilities for the quaternary system Cr-Fe-Mn-Ni as a function of temperature and alloy concentration. It is shown that, for two specific compositions (Cr 25Fe 25Mn 25Ni 25 and Cr 18Fe 27Mn 27Ni 28), the high value of probabilities for Cr-Fe-Fe-Fe and Mn-Mn-Ni-Ni are strongly correlated with the presence of the ordered phases L1 2 -CrFe 3 and L1 0-MnNi, respectively. These results are in an excellent agreement with predictions of these ground state structures by ab initio calculations. The general formalism is used to investigate the configuration entropy as a function of temperature and for 285 different alloy compositions. It is found that our matrix formulation of cluster probabilities provides an efficient tool to compute configuration entropy in multi-component alloys in a comparison with the result obtained by the thermodynamic integration method. At high temperatures, it is shown that many-body cluster correlations still play an important role in understanding the configuration entropy before reaching the solid solution limit of high-entroy alloys (HEAs).


Sign in / Sign up

Export Citation Format

Share Document