Electrical Properties of Composites Prepared from Conducting Polymer and Noble Metal Nanoparticles Probed by Conductive Tip Atomic Force Microscopy

2005 ◽  
2020 ◽  
Vol 14 (3) ◽  
pp. 1789-1800 ◽  
Author(s):  
Muhammad Nisar ◽  
Shujaat Ali Khan ◽  
Maryam Gul ◽  
Abdur Rauf ◽  
Salman Zafar ◽  
...  

The aim of the current research finding was to synthesize, characterize and antibacterial evaluation of sparfloxacin-mediated noble metal nanoparticles. Noble metal [silver (Ag), and gold (Au)] nanoparticles (NPs), mediated with fluoroquinolone, an anti-bacterial drug [Sparfloxacin, (Sp)], was synthesized by a facile and convenient procedure. Formulated Ag-Sp NPs, and Au-Sp NPs exhibited stability against variation in pH, NaCl solution, temperature, and time. The structural topographies of Ag-Sp, and Au-Sp NPs were determined by fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM) atomic force microscopy (AFM), and energy dispersive X-ray (EDX). UV-Vis revealed the formulation of NPs by showing typical surface Plasmon absorption maxima at 410 nm for Ag-Sp NPs and 555 nm for Au-Sp NPs. The AFM and SEM analysis ascertained stable mono dispersed Ag-Sp NPs and Au-Sp NPs in the size range of 40-50 nm, and 70-80 nm, respectively. Ag-Sp, and Au-Sp NPs exhibited antibacterial traits against Bacillus subtilis, Staphylococcus aureus, and Klebsiella pneumonia, showing a zone of inhibition (ZOI) ranging from 20±0.98 mm to 24±0.94 mm (Ag-Sp NPs), and 22±0.79 mm to 26±0.92 mm (Au-Sp NPs) at dose of 3 mg/mL.


2004 ◽  
Vol 10 (S02) ◽  
pp. 1102-1103
Author(s):  
Guangchun Cui ◽  
Rosario A Gerhardt

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


2007 ◽  
Vol 71 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Chang-Feng Yu ◽  
Sy-Hann Chen ◽  
Wen-Jia Xie ◽  
Yung-Shao Lin ◽  
Cheng-Yu Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document