scholarly journals Synthesis, Characterization, and Antimicrobial Properties of Sparfloxacin-Mediated Noble Metal Nanoparticles

2020 ◽  
Vol 14 (3) ◽  
pp. 1789-1800 ◽  
Author(s):  
Muhammad Nisar ◽  
Shujaat Ali Khan ◽  
Maryam Gul ◽  
Abdur Rauf ◽  
Salman Zafar ◽  
...  

The aim of the current research finding was to synthesize, characterize and antibacterial evaluation of sparfloxacin-mediated noble metal nanoparticles. Noble metal [silver (Ag), and gold (Au)] nanoparticles (NPs), mediated with fluoroquinolone, an anti-bacterial drug [Sparfloxacin, (Sp)], was synthesized by a facile and convenient procedure. Formulated Ag-Sp NPs, and Au-Sp NPs exhibited stability against variation in pH, NaCl solution, temperature, and time. The structural topographies of Ag-Sp, and Au-Sp NPs were determined by fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM) atomic force microscopy (AFM), and energy dispersive X-ray (EDX). UV-Vis revealed the formulation of NPs by showing typical surface Plasmon absorption maxima at 410 nm for Ag-Sp NPs and 555 nm for Au-Sp NPs. The AFM and SEM analysis ascertained stable mono dispersed Ag-Sp NPs and Au-Sp NPs in the size range of 40-50 nm, and 70-80 nm, respectively. Ag-Sp, and Au-Sp NPs exhibited antibacterial traits against Bacillus subtilis, Staphylococcus aureus, and Klebsiella pneumonia, showing a zone of inhibition (ZOI) ranging from 20±0.98 mm to 24±0.94 mm (Ag-Sp NPs), and 22±0.79 mm to 26±0.92 mm (Au-Sp NPs) at dose of 3 mg/mL.

RSC Advances ◽  
2018 ◽  
Vol 8 (70) ◽  
pp. 40454-40463 ◽  
Author(s):  
Diamela María Rocca ◽  
Julie P. Vanegas ◽  
Kelsey Fournier ◽  
M. Cecilia Becerra ◽  
Juan C. Scaiano ◽  
...  

Natural derived compounds, lignins, can be used as reducing and stabilizing agents to synthesize noble metal nanoparticles with antimicrobial properties.


RSC Advances ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 4092-4105 ◽  
Author(s):  
A. Rozmysłowska-Wojciechowska ◽  
E. Karwowska ◽  
S. Poźniak ◽  
T. Wojciechowski ◽  
L. Chlubny ◽  
...  

Schematic representation of the concept of present study. The flowchart shows the process of surface-modification of Ti3C2 MXene and the subsequent ecotoxicological analyses employed.


Author(s):  
Michael W. Bench ◽  
Jason R. Heffelfinger ◽  
C. Barry Carter

To gain a better understanding of the surface faceting that occurs in α-alumina during high temperature processing, atomic force microscopy (AFM) studies have been performed to follow the formation and evolution of the facets. AFM was chosen because it allows for analysis of topographical details down to the atomic level with minimal sample preparation. This is in contrast to SEM analysis, which typically requires the application of conductive coatings that can alter the surface between subsequent heat treatments. Similar experiments have been performed in the TEM; however, due to thin foil and hole edge effects the results may not be representative of the behavior of bulk surfaces.The AFM studies were performed on a Digital Instruments Nanoscope III using microfabricated Si3N4 cantilevers. All images were recorded in air with a nominal applied force of 10-15 nN. The alumina samples were prepared from pre-polished single crystals with (0001), , and nominal surface orientations.


Sign in / Sign up

Export Citation Format

Share Document