scholarly journals Life Cycle Analysis of Lithium-Ion Batteries under Low-Earth-Orbit Cycling Conditions

2018 ◽  
Vol 5 (5) ◽  
pp. 1237-1250 ◽  
Author(s):  
Andrea L. Hicks ◽  
Arthur D. Dysart ◽  
Vilas G. Pol

For rechargeable lithium ion batteries, natural and synthetic graphite anodes come with great economic and environmental costs.


Batteries ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 48 ◽  
Author(s):  
Qiang Dai ◽  
Jarod C. Kelly ◽  
Linda Gaines ◽  
Michael Wang

In light of the increasing penetration of electric vehicles (EVs) in the global vehicle market, understanding the environmental impacts of lithium-ion batteries (LIBs) that characterize the EVs is key to sustainable EV deployment. This study analyzes the cradle-to-gate total energy use, greenhouse gas emissions, SOx, NOx, PM10 emissions, and water consumption associated with current industrial production of lithium nickel manganese cobalt oxide (NMC) batteries, with the battery life cycle analysis (LCA) module in the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model, which was recently updated with primary data collected from large-scale commercial battery material producers and automotive LIB manufacturers. The results show that active cathode material, aluminum, and energy use for cell production are the major contributors to the energy and environmental impacts of NMC batteries. However, this study also notes that the impacts could change significantly, depending on where in the world the battery is produced, and where the materials are sourced. In an effort to harmonize existing LCAs of automotive LIBs and guide future research, this study also lays out differences in life cycle inventories (LCIs) for key battery materials among existing LIB LCA studies, and identifies knowledge gaps.


Batteries ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 20
Author(s):  
Riley Cook ◽  
Lukas Swan ◽  
Kevin Plucknett

A wide variety of commercial cylindrical lithium-ion batteries are available for use in nanosatellites (CubeSats) that cycle in low Earth orbit (LEO). This space application differs greatly from the conditions used to create the manufacturer datasheets that CubeSat teams rely on to screen cell types and estimate performance lifetimes. To address this, we experimentally test three LIB cell types using a representative LEO CubeSat power profile in three progressively complex test representations of LEO. The first is “standardized” condition (101 kPa-abs, 20 °C), which uses only a power cycler; the second adds a thermal chamber for “low temperature” condition (101 kPa-abs, 10 °C); and the third adds a vacuum chamber for “LEO” condition (0.2 kPa-abs, 10 °C). Results indicate that general “standardized” and “low temperature” conditions do not yield representative results to what would occur in LEO. Coincidentally, the “LEO” condition gives similar capacity degradation results as manufacturer datasheets. This was an unexpected finding, but suggests that CubeSat teams use full experimental thermal-vacuum testing or default to the manufacturer datasheet performance estimates during the lithium-ion cell screening and selection process. The use of a partial representation of the LEO condition is not recommended.


Author(s):  
Linda Gaines ◽  
John Sullivan ◽  
Andrew Burnham ◽  
Ilias Belharouak

Sign in / Sign up

Export Citation Format

Share Document