scholarly journals In Situ Raman Spectroelectrochemistry on Highly Polarized Cathode Materials for Lithium-Ion Batteries

2015 ◽  
Vol 17 (47) ◽  
pp. 32033-32043 ◽  
Author(s):  
Jing Wang ◽  
Yangyang Yu ◽  
Bing Li ◽  
Tao Fu ◽  
Dongquan Xie ◽  
...  

The Li2TiO3-coated LiNi0.5Co0.2Mn0.3O2 (LTO@NCM) cathode materials are synthesized via an in situ coprecipitation method to improve the electrochemical performance of NCM.


2019 ◽  
Vol 166 (3) ◽  
pp. A5378-A5385 ◽  
Author(s):  
Andreas Krause ◽  
Olga Tkacheva ◽  
Ahmad Omar ◽  
Ulrike Langklotz ◽  
Lars Giebeler ◽  
...  

2017 ◽  
Vol 8 (11) ◽  
pp. 1702514 ◽  
Author(s):  
Aram Choi ◽  
Jungwoo Lim ◽  
Hyung-Jin Kim ◽  
Sung Chul Jung ◽  
Hyung-Woo Lim ◽  
...  

2015 ◽  
Vol 1773 ◽  
pp. 33-40 ◽  
Author(s):  
Marcel Heber ◽  
Christian Schilling ◽  
Toni Gross ◽  
Christian Hess

ABSTRACTThe potential of Raman and UV-Vis diagnostics for spatially-resolved and in situ diagnostics of lithium-ion batteries is demonstrated. Regarding the use of in situ Raman diagnostics focus is put on LiCoO2 electrode materials, which were investigated in detail as composites of LiCoO2 with binder and conductive additives. The potential of in situ UV-Vis analysis is illustrated for carbon-based materials showing significant absorption changes during electrochemical cycling due to lithium de-/intercalation.


Sign in / Sign up

Export Citation Format

Share Document