Large Scale Aqueous Electrolyte Sodium Ion Based Energy Storage Batteries for Stationary Storage

2018 ◽  
Vol 6 (39) ◽  
pp. 18920-18927 ◽  
Author(s):  
Zhongtao Li ◽  
Jianze Feng ◽  
Han Hu ◽  
Yunfa Dong ◽  
Hao Ren ◽  
...  

The natural abundance of sodium resources makes sodium-ion batteries a potential and promising alternative to lithium ion battery technology for large-scale energy storage application.


2018 ◽  
Vol 54 (28) ◽  
pp. 3500-3503 ◽  
Author(s):  
C. V. Manohar ◽  
Tiago Correia Mendes ◽  
Mega Kar ◽  
Dabin wang ◽  
Changlong Xiao ◽  
...  

Sodium ion batteries (SIBs) are widely considered as alternative, sustainable, and cost-effective energy storage devices for large-scale energy storage applications.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingguang Wu ◽  
Wei Ni ◽  
Jin Hu ◽  
Jianmin Ma

Abstract Several emerging energy storage technologies and systems have been demonstrated that feature low cost, high rate capability, and durability for potential use in large-scale grid and high-power applications. Owing to its outstanding ion conductivity, ultrafast Na-ion insertion kinetics, excellent structural stability, and large theoretical capacity, the sodium superionic conductor (NASICON)-structured insertion material NaTi2(PO4)3 (NTP) has attracted considerable attention as the optimal electrode material for sodium-ion batteries (SIBs) and Na-ion hybrid capacitors (NHCs). On the basis of recent studies, NaTi2(PO4)3 has raised the rate capabilities, cycling stability, and mass loading of rechargeable SIBs and NHCs to commercially acceptable levels. In this comprehensive review, starting with the structures and electrochemical properties of NTP, we present recent progress in the application of NTP to SIBs, including non-aqueous batteries, aqueous batteries, aqueous batteries with desalination, and sodium-ion hybrid capacitors. After a thorough discussion of the unique NASICON structure of NTP, various strategies for improving the performance of NTP electrode have been presented and summarized in detail. Further, the major challenges and perspectives regarding the prospects for the use of NTP-based electrodes in energy storage systems have also been summarized to offer a guideline for further improving the performance of NTP-based electrodes.


2020 ◽  
Vol 8 (6) ◽  
pp. 2913-2933 ◽  
Author(s):  
Wen Tao Jing ◽  
Chun Cheng Yang ◽  
Qing Jiang

Sodium-ion batteries with metallic Sn- and Sb-based anodes have great potential for application in large-scale green energy storage devices.


2019 ◽  
Vol 12 (5) ◽  
pp. 1512-1533 ◽  
Author(s):  
Tiefeng Liu ◽  
Yaping Zhang ◽  
Zhanguo Jiang ◽  
Xianqing Zeng ◽  
Jiapeng Ji ◽  
...  

Owing to the four features summarized in this review, i.e., low-cost resource, high-power performance, all-climate adaptability and full-batty recyclability, sodium ion batteries show great promise for large-scale energy storage systems used for the application of renewable energy sources and smart grids.


Author(s):  
Xiang Hu ◽  
Genxiang Wang ◽  
Junwei Li ◽  
Junheng Huang ◽  
Yangjie Liu ◽  
...  

Sodium-ion hybrid capacitors (SIHCs) hold great promise in large-scale energy storage by compromising the merits of sodium-ion batteries and electrochemical capacitors, the mismatch of kinetic and capacity between battery-type anode...


Nanoscale ◽  
2021 ◽  
Author(s):  
Chenrui Zhang ◽  
Jingrui Shang ◽  
Huilong Dong ◽  
Edison Huixiang Ang ◽  
Linlin Tai ◽  
...  

In comparison to lithium-ion batteries, sodium-ion batteries (SIBs) have been proposed as an alternative for large-scale energy storage. However, finding an anode material that can overcome the sluggish electrochemical reaction...


Author(s):  
Assumpta C. Nwanya ◽  
Mesfin A. Kebede ◽  
Fabian I. Ezema ◽  
M. Maaza

Sign in / Sign up

Export Citation Format

Share Document