Density Functional Theory Studies of Formic Acid Oxidation on Pd (111), (100) and (110) Facet

2018 ◽  
Vol 20 (39) ◽  
pp. 25179-25185 ◽  
Author(s):  
Worawaran Thongnuam ◽  
Thana Maihom ◽  
Saowapak Choomwattana ◽  
Yuwanda Injongkol ◽  
Bundet Boekfa ◽  
...  

The hydrogenation of carbon dioxide (CO2) to formic acid over Lewis acidic zeolites as catalyst has been investigated by means of density functional theory (DFT) with the M06-L functional.


2010 ◽  
Vol 88 (8) ◽  
pp. 736-743 ◽  
Author(s):  
Cara M. Nordstrom ◽  
Alaina J. McGrath ◽  
Ajit J. Thakkar

Density functional theory and spin-component-scaled Møller–Plesset perturbation theory calculations are used to examine the microsolvation of the formic acid dimer. The lowest energy structures with n water molecules consist of a n-water cluster, not necessarily of lowest energy, with two formic acid molecules attached to its surface by hydrogen bonds. The total number of hydrogen bonds does not correlate directly with relative stability.


2021 ◽  
Author(s):  
Qian Tang ◽  
Ting Huang ◽  
Ruisi Huang ◽  
Hongyu Cao ◽  
Lihao Wang ◽  
...  

Abstract The hydrogen bond formation with formic acid would affect the complementary pair of bases between uracil and adenine, but the binding modes and spectral properties of hydrogen bonds are still obscure. Density functional theory and time-dependent density functional theory were applied to investigate the intermolecular hydrogen bonds between uracil and formic acid. The reduced density gradient (RDG), bond lengths and vibration absorption frequencies revealed that the most probable uracil-formic acid (U-FA) interaction mode formed in the position c of FA and the site 1 of U, that is, the mode 1c. The theoretical parameters in excited state complexes manifested that the variety of hydrogen bond configurations led to different degrees of strengthening or weakening of molecular interaction. In the implicit solvent (water), the formations of O-H∙∙∙O in the uracil-formic acid complexes were promoted obviously. These theoretical studies would positively affect the researches of life science and medicinal chemistry.


2018 ◽  
Vol 20 (36) ◽  
pp. 23717-23725 ◽  
Author(s):  
Vesa Hänninen ◽  
Garold Murdachaew ◽  
Gilbert M. Nathanson ◽  
R. Benny Gerber ◽  
Lauri Halonen

Ab initio molecular dynamics simulations of formic acid (FA) dimer colliding with liquid water at 300 K have been performed using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document